Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (3): 685-697.doi: 10.19799/j.cnki.2095-4239.2022.0692
• Energy Storage Materials and Devices • Previous Articles Next Articles
Xiuliang CHANG1,2,3(), Xichao LI1,2,3, Longzhou JIA1,2,3, Shouli WEI1,2,3, Jinghao WANG1,2,3, Zuoqiang DAI1,2,3, Lili ZHENG1,2,3()
Received:
2022-11-24
Revised:
2022-12-18
Online:
2023-03-05
Published:
2022-12-29
Contact:
Lili ZHENG
E-mail:x_l_chang@163.com;llzhengqdu@163.com
CLC Number:
Xiuliang CHANG, Xichao LI, Longzhou JIA, Shouli WEI, Jinghao WANG, Zuoqiang DAI, Lili ZHENG. Heat generation characteristics of overcharged cyclic aging batteries[J]. Energy Storage Science and Technology, 2023, 12(3): 685-697.
Table 2
Entropy coefficient of batteries at different SOC"
SOC | 熵热系数/(mV/K) | |||
---|---|---|---|---|
新电池 | 4.3 V过充循环电池 | 4.4 V过充循环电池 | 4.5 V过充循 环电池 | |
0% | -0.457632187 | 0.009601148 | 0.010780082 | 0.281875018 |
10% | -0.000498757 | 0.123093975 | 0.182931605 | 0.472242308 |
20% | 0.030525829 | 0.196617704 | 0.13185504 | 0.426139291 |
30% | 0.211809699 | 0.243988919 | 0.284177807 | 0.10451674 |
40% | 0.223622073 | 0.254646717 | 0.284445764 | 0.538850326 |
50% | 0.243044865 | 0.284940573 | 0.355354014 | 0.139143562 |
60% | 0.463981558 | 0.274904826 | 0.466202484 | 0.204868333 |
70% | 0.056183366 | 0.163246772 | 0.344983242 | 0.073815324 |
80% | 0.139989921 | 0.193519893 | 0.387118317 | 0.13060799 |
90% | 0.141328652 | 0.275153646 | 0.488052715 | 0.657287266 |
100% | -0.000325855 | 0.11217643 | 0.132055479 | -0.030355841 |
Table 4
DC resistance of four batteries at different SOCs"
SOC/% | 新电池 | 4.3 V过充电池 | 4.4 V过充电池 | 4.5 V过充电池 | ||||
---|---|---|---|---|---|---|---|---|
Rc/mΩ | Rd/mΩ | Rc/mΩ | Rd/mΩ | Rc/mΩ | Rd/mΩ | Rc/mΩ | Rd/mΩ | |
0 | 97.11 | 231.41 | 95.98 | 209.89 | 91.68 | 209.16 | 97.41 | 99.07 |
10 | 79.42 | 94.32 | 70.08 | 91.73 | 73.67 | 103.15 | 88.13 | 93.14 |
20 | 69.69 | 71.08 | 62.47 | 67.13 | 65.48 | 71.63 | 86.88 | 89.10 |
30 | 64.95 | 65.76 | 59.06 | 61.22 | 60.57 | 64.47 | 86.88 | 91.59 |
40 | 62.88 | 63.78 | 59.06 | 60.24 | 60.03 | 62.01 | 89.37 | 90.66 |
50 | 63.19 | 64.00 | 64.83 | 64.37 | 61.12 | 62.42 | 91.85 | 92.52 |
60 | 66.14 | 66.42 | 67.98 | 67.52 | 64.12 | 65.08 | 92.82 | 93.45 |
70 | 65.23 | 65.64 | 67.19 | 67.13 | 62.21 | 63.86 | 93.09 | 93.76 |
80 | 65.83 | 67.76 | 69.55 | 69.09 | 63.3 | 64.88 | 98.06 | 95.31 |
90 | 65.83 | 67.32 | 70.08 | 69.88 | 67.94 | 68.56 | 105.50 | 98.42 |
100 | 80.30 | 76.62 | 89.50 | 80.31 | 91.41 | 79.62 | 137.36 | 104.32 |
Table 5
Peaks of heat generation power for charging batteries"
电池 | 参数 | 第一个峰值 | 第二个峰值 | 第三个峰值 | Q/kJ |
---|---|---|---|---|---|
新电池 | SOC | 6.9%~9.4% | 36.0%~60.0% | 77.0%~82.0% | 2.24 |
P/W | 0.31 | 0.39 | 0.31 | ||
4.3 V过充电池 | SOC | 6.4%~9.3% | 44.8%~47.7% | 70.3%~73.2% | 1.72 |
P/W | 0.23 | 0.35 | 0.29 | ||
4.4 V过充电池 | SOC | 6.7%~17.4% | 44.9%~53.6% | 75.8%~78.5% | 1.72 |
P/W | 0.18 | 0.35 | 0.33 | ||
4.5 V过充电池 | SOC | 7.0%~11.2% | 44.6%~51.4% | 71.2%~73.6% | 1.68 |
P/W | 0.18 | 0.34 | 0.32 |
Table 7
Heat generation and proportion of each part during battery charging and discharging"
项目 | 新电池 | 4.3 V过充循环电池 | 4.4 V过充循环电池 | 4.5 V过充循环电池 | ||||
---|---|---|---|---|---|---|---|---|
充电 | 放电 | 充电 | 放电 | 充电 | 放电 | 充电 | 放电 | |
总产热/kJ | 1.94 | 1.81 | 1.58 | 1.46 | 1.55 | 1.39 | 1.33 | 1.19 |
可逆热/kJ | 0.46 | -0.34 | 0.61 | -0.48 | 0.73 | -0.57 | 0.57 | -0.44 |
可逆热占比/% | 23.71 | 18.78 | 38.61 | 32.88 | 47.10 | 41.01 | 42.86 | 36.97 |
不可逆热/kJ | 1.48 | 2.15 | 0.97 | 1.94 | 0.82 | 1.96 | 0.76 | 1.63 |
不可逆热占比/% | 76.29 | 81.22 | 61.39 | 67.12 | 52.90 | 58.99 | 57.14 | 63.03 |
1 | JINDAL P, KATIYAR R, BHATTACHARYA J. Evaluation of accuracy for Bernardi equation in estimating heat generation rate for continuous and pulse-discharge protocols in LFP and NMC based Li-ion batteries[J]. Applied Thermal Engineering, 2022, 201: doi: 10.1016/j.applthermaleng.2021.117794. |
2 | JIANG Z Y, QU Z G. Lithium-ion battery thermal management using heat pipe and phase change material during discharge-charge cycle: A comprehensive numerical study[J]. Applied Energy, 2019, 242: 378-392. |
3 | BERNARDI D, PAWLIKOWSKI E, NEWMAN J. A general energy balance for battery systems[J]. Journal of the Electrochemical Society, 1985, 132(1): 5-12. |
4 | SATO N, YAGI K. Thermal behavior analysis of nickel metal hydride batteries for electric vehicles[J]. JSAE Review, 2000, 21(2): 205-211. |
5 | LIU S B, ZHANG H Y, XU X B. A study on the transient heat generation rate of lithium-ion battery based on full matrix orthogonal experimental design with mixed levels[J]. Journal of Energy Storage, 2021, 36: doi: 10.1016/j.est.2021.102446. |
6 | ZIAT K, LOUAHLIA H, PETRONE R, et al. Experimental investigation on the impact of the battery charging/discharging current ratio on the operating temperature and heat generation[J]. International Journal of Energy Research, 2021, 45(11): 16754-16768. |
7 | LIN C J, XU S C, LIU J L. Measurement of heat generation in a 40 Ah LiFePO4 prismatic battery using accelerating rate calorimetry[J]. International Journal of Hydrogen Energy, 2018, 43(17): 8375-8384. |
8 | LYU P Z, HUO Y T, QU Z G, et al. Investigation on the thermal behavior of Ni-rich NMC lithium ion battery for energy storage[J]. Applied Thermal Engineering, 2020, 166: doi:10.1016/j.applthermaleng. 2019.114749. |
9 | SHENG L, SU L, ZHANG H Y, et al. An improved calorimetric method for characterizations of the specific heat and the heat generation rate in a prismatic lithium ion battery cell[J]. Energy Conversion and Management, 2019, 180: 724-732. |
10 | LIU G M, LU L G, LI J Q, et al. Thermal modeling of a LiFePO4/graphite battery and research on the influence of battery temperature rise on EV driving range estimation[C]//2013 IEEE Vehicle Power and Propulsion Conference (VPPC). October 15-18, 2013, Beijing, China. IEEE, 2013: 1-5. |
11 | 钱柯宇. 动力电池全生命周期产热规律仿真研究[D]. 杭州: 浙江大学, 2021. |
QIAN K Y. Simulation research on heat production law of power battery in the whole life cycle[D]. Hangzhou: Zhejiang University, 2021. | |
12 | 黄瑞, 陈芬放, 吴启超, 等. 老化对不同能量密度锂电池产热的影响[J]. 实验技术与管理, 2021, 38(4): 42-47. |
HUANG R, CHEN F F, WU Q C, et al. Effect of ageing on heat generation of lithium-ion batteries with different energy density[J]. Experimental Technology and Management, 2021, 38(4): 42-47. | |
13 | 王康康, 高飞, 杨凯, 等. 不同健康状态等级的储能磷酸铁锂电池熵变系数及放电产热研究[J]. 高电压技术, 2017, 43(7): 2241-2248. |
WANG K K, GAO F, YANG K, et al. Research of LiFePO4/C energy storage batteriesê entropy coefficient and discharge heat generation based on the state of health[J]. High Voltage Engineering, 2017, 43(7): 2241-2248. | |
14 | 陈兵, 郑莉莉, 李希超, 等. 老化电池的放电性能与充放电产热特性[J]. 储能科学与技术, 2022, 11(2): 679-689. |
CHEN B, ZHENG L L, LI X C, et al. Discharge performance and charge-discharge heat generation characteristics of aging batteries[J]. Energy Storage Science and Technology, 2022, 11(2): 679-689. | |
15 | LIU G M, OUYANG M G, LU L G, et al. Analysis of the heat generation of lithium-ion battery during charging and discharging considering different influencing factors[J]. Journal of Thermal Analysis and Calorimetry, 2014, 116(2): 1001-1010. |
16 | 甘云华, 谭梅鲜, 梁嘉林, 等. 恒功率放电下锂离子电池的产热特性[J]. 华南理工大学学报(自然科学版), 2020, 48(7): 1-8. |
GAN Y H, TAN M X, LIANG J L, et al. Analysis on heat generation in a lithium-ion battery under constant power discharging[J]. Journal of South China University of Technology (Natural Science Edition), 2020, 48(7): 1-8. | |
17 | FANG K Z, CHEN S, MU D B, et al. The heat generation rate of nickel-metal hydride battery during charging/discharging[J]. Journal of Thermal Analysis and Calorimetry, 2013, 112(2): 977-981. |
18 | MEI W X, LI H, ZHAO C P, et al. Numerical study on thermal characteristics comparison between charge and discharge process for lithium ion battery[J]. International Journal of Heat and Mass Transfer, 2020, 162: doi: 10.1016/j.ijheatmasstransfer.2020. 120319. |
19 | 李维平, 李隆键, 陈化雨. 锂离子电池可逆与不可逆生热特性研究[J]. 汽车工程学报, 2019, 9(2): 123-129. |
LI W P, LI L J, CHEN H Y. Investigation on reversible and irreversible heat generation of lithium-ion battery[J]. Chinese Journal of Automotive Engineering, 2019, 9(2): 123-129. | |
20 | LIU Y D, LIU Q, LI Z F, et al. Failure study of commercial LiFePO4 cells in over-discharge conditions using electrochemical impedance spectroscopy[J]. Journal of the Electrochemical Society, 2014, 161(4): doi: 10.1149/2.039306jes. |
21 | BARRÉ A, DEGUILHEM B, GROLLEAU S, et al. A review on lithium-ion battery ageing mechanisms and estimations for automotive applications[J]. Journal of Power Sources, 2013, 241: 680-689. |
[1] | Yulong ZHANG, Weiling LUAN, Senming WU. Quantitative analysis of the lithium plating-stripping process of lithium-ion batteries using external characteristic methods [J]. Energy Storage Science and Technology, 2023, 12(2): 529-535. |
[2] | Huimin ZHANG, Jing WANG, Yibo WANG, Jiaxin ZHENG, Jingyi QIU, Gaoping CAO, Hao ZHANG. Multiscale modeling of the SEI of lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(2): 366-382. |
[3] | Shaojun NIU, Kai WU, Guobin ZHU, Yan WANG, Qunting QU, Honghe ZHENG. Studies on the swelling force during cycling of Si-based anodes in lithium ion batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2989-2994. |
[4] | Qunbin ZHANG, Tao DONG, Jingjing LI, Yanxia LIU, Haitao ZHANG. Research progress on the recovery and high-value utilization of spent electrolyte from lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2798-2810. |
[5] | Xianxi LIU, Anliang SUN, Chuan TIAN. Research on liquid cooling and heat dissipation of lithium-ion battery pack based on bionic wings vein channel cold plate [J]. Energy Storage Science and Technology, 2022, 11(7): 2266-2273. |
[6] | Jianxiang DENG, Jinliang ZHAO, Chengde HUANG. High energy density lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(7): 2092-2102. |
[7] | OU Yu, HOU Wenhui, LIU Kai. Research progress of smart safety electrolytes in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1772-1787. |
[8] | HAN Junwei, XIAO Jing, TAO Ying, KONG Debin, LV Wei, YANG Quanhong. Compact energy storage: Methodology with graphenes and the applications [J]. Energy Storage Science and Technology, 2022, 11(6): 1865-1873. |
[9] | Lei LI, Zhao LI, Dan JI, Huichang NIU. Overcharge induced thermal runaway behaviors of pouch-type lithium-ion batteries with LFP and NCM cathodes: the differences and reasons [J]. Energy Storage Science and Technology, 2022, 11(5): 1419-1427. |
[10] | Ce ZHANG, Siwu LI, Jia XIE. Research progress on the prelithiation technology of alloy-type anodes [J]. Energy Storage Science and Technology, 2022, 11(5): 1383-1400. |
[11] | Nan LIN, Ulrike KREWER, Jochen ZAUSCH, Konrad STEINER, Haibo LIN, Shouhua FENG. Development and application of multiphysics models for electrochemical energy storage and conversion systems [J]. Energy Storage Science and Technology, 2022, 11(4): 1149-1164. |
[12] | Zhun NIU, Xueyan ZHANG, Jiawei FENG, Liguo JIN, Yonghui SHI, Jiayi YU, Zichao LI, Zhijun FENG. Preparation and electrochemical properties of FeSe2-C three-dimensional conductive composites [J]. Energy Storage Science and Technology, 2022, 11(11): 3470-3477. |
[13] | Hongzhang ZHU, Chuanping WU, Tiannian ZHOU, Jie DENG. Thermal runaway characteristics of LiFePO4 and ternary lithium batteries with external overheating [J]. Energy Storage Science and Technology, 2022, 11(1): 201-210. |
[14] | Lianbing LI, Sijia LI, Jie LI, Kun SUN, Zhengping WANG, Haiyue YANG, Bing GAO, Shaobo YANG. RUL prediction of lithium-ion battery based on differential voltage and Elman neural network [J]. Energy Storage Science and Technology, 2021, 10(6): 2373-2384. |
[15] | Dajin LIU, Qiang WU, Renjie HE, Chuang YU, Jia XIE, Shijie CHENG. Research progress of biopolymers in Si anodes for lithium-ion batteries [J]. Energy Storage Science and Technology, 2021, 10(6): 2156-2168. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||