Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (4): 1034-1044.doi: 10.19799/j.cnki.2095-4239.2022.0671
• Energy Storage Materials and Devices • Previous Articles Next Articles
Yuedi WANG(), Zhongzhu QIU(), Miao WU, Yanyan ZHU, Meng QU
Received:
2022-11-14
Revised:
2022-12-11
Online:
2023-04-05
Published:
2023-05-08
Contact:
Zhongzhu QIU
E-mail:869302922@qq.com;qiuzhongzhu@shiep.edu.cn
CLC Number:
Yuedi WANG, Zhongzhu QIU, Miao WU, Yanyan ZHU, Meng QU. Preparation and electrochemical properties of porous NiMoO4/NiCo2S4 composites[J]. Energy Storage Science and Technology, 2023, 12(4): 1034-1044.
Fig. 5
(a) CV curve of NiMoO4 at different scan rates; (b) CV curve of NiCo2S4 at different scan rates; (c) CV curve of NiMoO4/NiCo2S4 prepared at different solution concentrations; (d) CV curve of NiMoO4/NiCo2S4 at different scan rates; (e) Linear fitting between the peak current of the redox peak of NiMoO4/NiCo2S4electrode and the square root of the scanning rate; (f) Capacitance contribution rate at different scanning rates"
1 | GONZÁLEZ A, GOIKOLEA E, BARRENA J A, et al. Review on supercapacitors: Technologies and materials[J]. Renewable and Sustainable Energy Reviews, 2016, 58: 1189-1206. |
2 | PANDOLFO A G, HOLLENKAMP A F. Carbon properties and their role in supercapacitors[J]. Journal of Power Sources, 2006, 157(1): 11-27. |
3 | WANG H L, DAI H J. Strongly coupled inorganic-nano-carbon hybrid materials for energy storage[J]. Chemical Society Reviews, 2013, 42(7): 3088-3113. |
4 | LI Y M, HAN X, YI T F, et al. Review and prospect of NiCo2O4-based composite materials for supercapacitor electrodes[J]. Journal of Energy Chemistry, 2019, 31: 54-78. |
5 | PUSAWALE S N, DESHMUKH P R, GUNJAKAR J L, et al. SnO2-RuO2 composite films by chemical deposition for supercapacitor application[J]. Materials Chemistry and Physics, 2013, 139(2/3): 416-422. |
6 | ZHU J, XIANG L, ZHOU Y Z, et al. Diethylenetriamine-assisted one-step hydrothermal synthesis of cotton-like CoS cluster for high-performance supercapacitor[J]. Materials Science-Poland, 2018, 36(2): 297-303. |
7 | PING Y J, YANG S J, HAN J Z, et al. N-self-doped graphitic carbon aerogels derived from metal-organic frameworks as supercapacitor electrode materials with high-performance[J]. Electrochimica Acta, 2021, 380: doi: 10.1016/j.electacta.2021.138237. |
8 | XU S Z, HAO H L, CHEN Y N, et al. Flexible all-solid-state supercapacitors based on PPy /rGO nanocomposite on cotton fabric[J]. Nanotechnology, 2021, 32(30): doi: 10.1088/1361-6528/abf9c4. |
9 | FAN Z J, YAN J, WEI T, et al. Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density[J]. Advanced Functional Materials, 2011, 21(12): 2366-2375. |
10 | SHENG R, HU J D, LU X Y, et al. Solid-state synthesis and superior electrochemical performance of MnMoO4 nanorods for asymmetric supercapacitor[J]. Ceramics International, 2021, 47(11): 16316-16323. |
11 | PRABHU S, GOWDHAMAN A, HARISH S, et al. Synthesis of petal-like CoMoO4/r-GO composites for high performances hybrid supercapacitor[J]. Materials Letters, 2021, 295: doi:10.1016/j.matlet.2021.129821. |
12 | MUTHU D, VARGHEESE S, HALDORAI Y, et al. NiMoO4/reduced graphene oxide composite as an electrode material for hybrid supercapacitor[J]. Materials Science in Semiconductor Processing, 2021, 135: doi:10.1016/j.mssp.2021.106078. |
13 | SEEVAKAN K, MANIKANDAN A, DEVENDRAN P, et al. Microwave combustion synthesis, magneto-optical and electrochemical properties of NiMoO4 nanoparticles for supercapacitor application[J]. Ceramics International, 2018, 44(12): 13879-13887. |
14 | XIAO J W, WAN L, YANG S H, et al. Design hierarchical electrodes with highly conductive NiCo2S4 nanotube arrays grown on carbon fiber paper for high-performance pseudocapacitors[J]. Nano Letters, 2014, 14(2): 831-838. |
15 | LI J F, CHEN D D, WU Q S. Facile synthesis of CoS porous nanoflake for high performance supercapacitor electrode materials[J]. Journal of Energy Storage, 2019, 23: 511-514. |
16 | SONG J, DU L J, WANG J Y, et al. NiS nanosheets synthesized by one-step microwave for high-performance supercapacitor[J]. Functional Materials Letters, 2021, 14(8): doi: 10.1142/S1793604721500351. |
17 | ZHAI S X, JIN K L, ZHOU M, et al. In-situ growth of flower-like CuS microsphere on carbonized cotton for high-performance flexible supercapacitor[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 575: 75-83. |
18 | NAVEENKUMAR P, PARUTHIMAL KALAIGNAN G. Electrodeposited MnS on graphene wrapped Ni-Foam for enhanced supercapacitor applications[J]. Electrochimica Acta, 2018, 289: 437-447. |
19 | ZHANG L S, ZHENG D L, PEI S L, et al. Rational fabrication of nanosheet-dewy NiMoO4/Ni3S2 nanohybrid for efficient hybrid supercapacitor[J]. Journal of Alloys and Compounds, 2019, 783: 399-408. |
20 | HAO L, SHEN L F, WANG J, et al. Hollow NiCo2S4 nanotube arrays grown on carbon textile as a self-supported electrode for asymmetric supercapacitors[J]. RSC Advances, 2016, 6(12): 9950-9957. |
21 | MANE S M, PAWAR S S, GO J S, et al. Asymmetric supercapacitor properties of fern-like nanostructured NiCo2S4 synthesized through a one-pot simple solvothermal method[J]. Materials Letters, 2021, 301: doi: 10.1016/j.matlet.2021.130262. |
22 | LIU S D, JUN S C. Hierarchical Manganese cobalt sulfide core-shell nanostructures for high-performance asymmetric supercapacitors[J]. Journal of Power Sources, 2017, 342: 629-637. |
23 | XU X Y, LIANG L N, ZHANG Z N, et al. Well-connected NiMoS4 nanosheets and Ni foam skeleton bonded through conductive reduced graphene oxide for highly efficient hybrid supercapacitor[J]. Diamond and Related Materials, 2021, 112: doi: 10.1016/j.diamond.2021.108240. |
24 | YU L, ZHANG L, WU H B, et al. Formation of NixCo3– xS4Hollow nanoprisms with enhanced pseudocapacitive properties[J]. Angewandte Chemie International Edition, 2014, 53(14): 3711-3714. |
25 | CHEN H C, JIANG J J, ZHANG L, et al. Highly conductive NiCo2S4 urchin-like nanostructures for high-rate pseudocapacitors[J]. Nanoscale, 2013, 5(19): 8879-8883. |
26 | NIU L Y, WANG Y D, RUAN F P, et al. In situ growth of NiCo2S4@Ni3V2O8 on Ni foam as a binder-free electrode for asymmetric supercapacitors[J]. Journal of Materials Chemistry A, 2016, 4(15): 5669-5677. |
27 | PAN Q, LIU Y H, ZHAO L J. Co9S8/Mo2S3 nanorods on CoS2 laminar arrays as advanced electrode with superior rate properties and long cycle life for asymmetric supercapacitors[J]. Chemical Engineering Journal, 2018, 351: 603-612. |
28 | JIANG G, ZHANG M Y, LI X Q, et al. NiMoO4@Ni(OH)2 core/shell nanorods supported on Ni foam for high-performance supercapacitors[J]. RSC Advances, 2015, 5(85): 69365-69370. |
29 | SHINDE S K, RAMESH S, BATHULA C, et al. Novel approach to synthesize NiCo2S4 composite for high-performance supercapacitor application with different molar ratio of Ni and Co[J]. Scientific Reports, 2019, 9(1): 1-10. |
30 | 李守涛, 孟庆函, 阮一钊, 等. Li(Ni1/3Co1/3Mn1/3)O2/graphite电池在备用电源工况下的交流阻抗[J]. 储能科学与技术, 2019, 8(6): 1171-1175. |
LI S T, MENG Q H, RUAN Y Z, et al. AC Impedance of Li(Ni1/3Co1/3Mn1/3)O2/graphite cell as UPS[J]. Energy Storage Science and Technology, 2019, 8(6): 1171-1175. |
[1] | Cai TANG, Jiangmin JIANG, Xinfeng WANG, Guangfa LIU, Yanhua CUI, Quanchao ZHUANG. Research progress of Li/CF x primary batteries [J]. Energy Storage Science and Technology, 2023, 12(4): 1093-1109. |
[2] | Hongbing CHEN, Xuening GAO, Tao LIU, Congcong WANG, Rui ZHAO, Junhui SUN, Chuanling WANG, Di HE. Performance of a solar PV/T system applying a paraffin/graphene oxide composite phase change material [J]. Energy Storage Science and Technology, 2023, 12(3): 661-668. |
[3] | Yuting ZHU, Gongqin YAN, Yuqian LIN. Electrochemical properties and First-principles study of MoS2/rGO composite [J]. Energy Storage Science and Technology, 2023, 12(3): 698-709. |
[4] | Zezheng WANG, Wenhao QU, Yajun WANG, Run QIN, Yibing LIU. Simulation and stress analysis of large capacity composite flywheel rotor [J]. Energy Storage Science and Technology, 2023, 12(3): 669-675. |
[5] | Ke XU, Juexi CHEN, Yao MENG, Zhiye YUAN, Xingyan WANG. Preparation of Cu-NiCoP microspheres and their supercapacitive performance [J]. Energy Storage Science and Technology, 2023, 12(2): 357-365. |
[6] | Han ZHENG, Peipei LAI, Xiaohua TIAN, Zhuo SUN, Zhejuan ZHANG. Performance of large-scale silicon particles coated with multistage carbon as anode materials for lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(1): 23-34. |
[7] | Junlei WANG, Diling ZHANG, Kun WANG, Dongdong XU, Xianggui XU, Hua YAO, Wenwei LIU, Yun HUANG. Carbonates/blast furnace slag form-stable phase change materials [J]. Energy Storage Science and Technology, 2022, 11(9): 3028-3034. |
[8] | Hao YIN, Zhiwei TANG, Hao WANG, Yi JIN, Yulong DING. Investigation on a time-sharing heating system using a high-density composite phase change heat storage material-an electric boiler [J]. Energy Storage Science and Technology, 2022, 11(9): 3003-3010. |
[9] | Sida HUO, Wendong XUE, Xinli LI, Yong LI. Visualization analysis of composite electrolytes for lithium battery based on CiteSpace [J]. Energy Storage Science and Technology, 2022, 11(7): 2103-2113. |
[10] | Yuzuo WANG, Yinli LU, Miao DENG, Bin YANG, Xuewen YU, Ge JIN, Dianbo RUAN. Research progress of self-discharge in supercapacitors [J]. Energy Storage Science and Technology, 2022, 11(7): 2114-2125. |
[11] | SHI Peng, ZHAI Ximin, YANG Hejie, ZHAO Chenzi, YAN Chong, BIE Xiaofei, JIANG Tao, ZHANG Qiang. Recent advances in composite lithium anode under practical conditions [J]. Energy Storage Science and Technology, 2022, 11(6): 1725-1738. |
[12] | Nan LIN, Ulrike KREWER, Jochen ZAUSCH, Konrad STEINER, Haibo LIN, Shouhua FENG. Development and application of multiphysics models for electrochemical energy storage and conversion systems [J]. Energy Storage Science and Technology, 2022, 11(4): 1149-1164. |
[13] | Tiezhu GUO, Di ZHOU, Chuanfang ZHANG. Strategies for improving MXene colloidal stability and impact on their supercapacitor performance [J]. Energy Storage Science and Technology, 2022, 11(4): 1165-1174. |
[14] | Yongli TONG, Xiang WU. Electrochemical performance of Co3O4 electrode materials derived from Co metal-organic framework [J]. Energy Storage Science and Technology, 2022, 11(3): 1035-1043. |
[15] | Yuying LI, Wenzhen WEI, Qi LI, Yuting WU. Preparation and investigation of quaternary nitrates/halloysites/graphite shape-stable composite phase change material with low melting temperature for thermal energy storage [J]. Energy Storage Science and Technology, 2022, 11(3): 1044-1051. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||