Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (6): 1755-1764.doi: 10.19799/j.cnki.2095-4239.2023.0048
• Energy Storage Materials and Devices • Previous Articles Next Articles
Yongshuai YU1(), Yongfeng LIU1(), Pucheng PEI2, Lu ZHANG1, Shengzhuo YAO1
Received:
2023-02-06
Revised:
2023-02-24
Online:
2023-06-05
Published:
2023-06-21
Contact:
Yongfeng LIU
E-mail:yuyongshuai2022@163.com;liuyongfeng@bucea.edu.cn
CLC Number:
Yongshuai YU, Yongfeng LIU, Pucheng PEI, Lu ZHANG, Shengzhuo YAO. Effect of cathode relative humidity on membrane water content and performance of PEMFC[J]. Energy Storage Science and Technology, 2023, 12(6): 1755-1764.
Table 1
Main parameters of the simulation model"
部件 | 数值 | 单位 |
---|---|---|
质子交换膜厚度 | 5×10-5 | m |
催化层厚度 | 1×10-5 | m |
气体扩散层厚度 | 2×10-4 | m |
阴、阳极流道深度 | 8×10-4、6×10-4 | m |
流道宽度 | 1.2×10-3 | m |
流道数目 | 5 | |
阴、阳极参考电流密度 | 4000、5.25 | A/m2 |
阴、阳极传递系数 | 1.0、1.0 | |
干膜的质量 | 100 | kg/m2 |
膜的当量质量 | 1.1 | kg/mol |
膜的密度 | 1980 | kg/m3 |
膜、气体扩散层、催化层的热导率 | 0.4、1.2、1.5 | W/(m·K) |
气体扩散层、催化层的电导率 | 2500、2500 | S/m |
气体扩散层、催化层的孔隙率 | 0.5、0.28 | |
液态水的动力黏度 | 4.55×10-4 | kg/(m·s) |
开路电压 | 1.1 | V |
1 | IJAODOLA O S, EL-HASSAN Z, OGUNGBEMI E, et al. Energy efficiency improvements by investigating the water flooding management on proton exchange membrane fuel cell (PEMFC)[J]. Energy, 2019, 179: 246-267. |
2 | 葛睿彤, 郑艺华. 燃料电池传热传质分析进展综述[J]. 储能科学与技术, 2020, 9(1): 40-56. |
GE R T, ZHENG Y H. Review on the progress of heat and mass transfer analysis of fuel cells[J]. Energy Storage Science and Technology, 2020, 9(1): 40-56. | |
3 | REN P, PEI P C, LI Y H, et al. Degradation mechanisms of proton exchange membrane fuel cell under typical automotive operating conditions[J]. Progress in Energy and Combustion Science, 2020, 80: doi: 10.1016/j.pecs.2020.100859. |
4 | 万燕鸣, 熊亚林, 王雪颖. 全球主要国家氢能发展战略分析[J]. 储能科学与技术, 2022, 11(10): 3401-3410. |
WAN Y M, XIONG Y L, WANG X Y. Strategic analysis of hydrogen energy development in major countries[J]. Energy Storage Science and Technology, 2022, 11(10): 3401-3410. | |
5 | JIAO K, LI X G. Water transport in polymer electrolyte membrane fuel cells[J]. Progress in Energy and Combustion Science, 2011, 37(3): 221-291. |
6 | LIU Y, BAI S, WEI P, et al. Numerical and experimental investigation of the asymmetric humidification and dynamic temperature in proton exchange membrane fuel cell[J]. Fuel Cells, 2020, 20(1): 48-59. |
7 | JEON D H, KIM K N, BAEK S M, et al. The effect of relative humidity of the cathode on the performance and the uniformity of PEM fuel cells[J]. International Journal of Hydrogen Energy, 2011, 36(19): 12499-12511. |
8 | OZEN D N, TIMURKUTLUK B, ALTINISIK K. Effects of operation temperature and reactant gas humidity levels on performance of PEM fuel cells[J]. Renewable and Sustainable Energy Reviews, 2016, 59: 1298-1306. |
9 | MULYAZMI, DAUD W R W, OCTAVIA S, et al. The relative humidity effect of the reactants flows into the cell to increase PEM fuel cell performance[J]. MATEC Web of Conferences, 2018, 156: doi:10.1051/matecconf/201815603033. |
10 | ZHANG J L, TANG Y H, SONG C J, et al. PEM fuel cell relative humidity (RH) and its effect on performance at high temperatures[J]. Electrochimica Acta, 2008, 53(16): 5315-5321. |
11 | JIAN Q F, MA G Q, QIU X L. Influences of gas relative humidity on the temperature of membrane in PEMFC with interdigitated flow field[J]. Renewable Energy, 2014, 62: 129-136. |
12 | MIGLIARDINI F, UNICH A, CORBO P. Experimental comparison between external and internal humidification in proton exchange membrane fuel cells for road vehicles[J]. International Journal of Hydrogen Energy, 2015, 40(17): 5916-5927. |
13 | WANG Y L, WANG S X, LIU S C, et al. Optimization of reactants relative humidity for high performance of polymer electrolyte membrane fuel cells with co-flow and counter-flow configurations[J]. Energy Conversion and Management, 2020, 205: doi: 10.1016/j.enconman.2019.112369. |
14 | CHENG Z Y, LUO L Z, HUANG B, et al. Effect of humidification on distribution and uniformity of reactants and water content in PEMFC[J]. International Journal of Hydrogen Energy, 2021, 46(52): 26560-26574. |
15 | ÖZDEMİR S N, TAYMAZ İ. A CFD modeling study based on relative humidity effect on PEMFC performance[J]. International Journal of Automotive Science and Technology, 2021, 5(3): 192-198. |
16 | IRANZO A, BOILLAT P, BIESDORF J, et al. Investigation of the liquid water distributions in a 50 cm2 PEM fuel cell: Effects of reactants relative humidity, current density, and cathode stoichiometry[J]. Energy, 2015, 82: 914-921. |
17 | 陆佳斌, 申欣明, 陈明, 等. 阴极湿度与电流密度对PEMFC性能的协同影响[J]. 电源技术, 2021, 45(8): 1018-1022. |
LU J B, SHEN X M, CHEN M, et al. Synergistic effect of cathode humidity and current density on performance of PEMFC[J]. Chinese Journal of Power Sources, 2021, 45(8): 1018-1022. | |
18 | GINER-SANZ J J, ORTEGA E M, PÉREZ-HERRANZ V. Statistical analysis of the effect of temperature and inlet humidities on the parameters of a semiempirical model of the internal resistance of a polymer electrolyte membrane fuel cell[J]. Journal of Power Sources, 2018, 381: 84-93. |
19 | KITAMURA N, MANABE K, NONOBE Y, et al. Development of water content control system for fuel cell hybrid vehicles based on AC impedance[R]. SAE Technical Paper, 2010: doi: 10.4271/2010-01-1088. |
20 | WANG B W, WU K C, XI F Q, et al. Numerical analysis of operating conditions effects on PEMFC with anode recirculation[J]. Energy, 2019, 173: 844-856. |
21 | PENG Z, BADETS V, HUGUET P, et al. Operando μ-Raman study of the actual water content of perfluorosulfonic acid membranes in the fuel cell[J]. Journal of Power Sources, 2017, 356: 200-211. |
22 | SPRINGER T E, ZAWODZINSKI T A, GOTTESFELD S. Polymer electrolyte fuel cell model[J]. Journal of the Electrochemical Society, 1991, 138(8): 2334-2342. |
23 | LIM B H, MAJLAN E H, DAUD W R W, et al. Effects of flow field design on water management and reactant distribution in PEMFC: A review[J]. Ionics, 2016, 22(3): 301-316. |
24 | KUSOGLU A, WEBER A Z. New insights into perfluorinated sulfonic-acid ionomers[J]. Chemical Reviews, 2017, 117(3): 987-1104. |
25 | WANG B H, LIN R, LIU D C, et al. Investigation of the effect of humidity at both electrode on the performance of PEMFC using orthogonal test method[J]. International Journal of Hydrogen Energy, 2019, 44(26): 13737-13743. |
26 | LIU Q S, LAN F C, CHEN J Q, et al. A review of proton exchange membrane fuel cell water management: Membrane electrode assembly[J]. Journal of Power Sources, 2022, 517: doi: 10.1016/j.jpowsour.2021.230723. |
27 | 彭跃进, 张国瑞, 王勇, 等. 阴、阳极加湿对质子交换膜燃料电池性能影响的差异性[J]. 电工技术学报, 2017, 32(4): 196-203. |
PENG Y J, ZHANG G R, WANG Y, et al. Differences on the influences of humidity of cathod and anode on the performance of proton exchange membrane fuel cell[J]. Transactions of China Electrotechnical Society, 2017, 32(4): 196-203. | |
28 | YAN Q G, TOGHIANI H, CAUSEY H. Steady state and dynamic performance of proton exchange membrane fuel cells (PEMFCs) under various operating conditions and load changes[J]. Journal of Power Sources, 2006, 161(1): 492-502. |
[1] | Zian PENG, Wenchao DUAN, Jie LI, Xiaoqin SUN, Mengjie SONG. Energy storage characteristics of a shell-and-tube phase change energy storage heat exchanger for data centers [J]. Energy Storage Science and Technology, 2023, 12(6): 1765-1773. |
[2] | Yuxin CHEN, Jiamu YANG, Dongbo LI, Cheng LIAN, Honglai LIU. Numerical simulation of the vacuum drying process of cylindrical lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(6): 1957-1967. |
[3] | Zifeng HU, Yaozu XU, Zhenyun DUAN, Xiangdong SHANG, Jingjiu XU. Analysis of the heat storage process of a new heat storage body structure [J]. Energy Storage Science and Technology, 2023, 12(1): 165-171. |
[4] | Sujin GE, Long ZHANG, Xiaohua YANG, Wenhao SHAN, Guangqiang XU. Simulation study on the influence of air supply method on the cooling effect of energy storage battery cluster [J]. Energy Storage Science and Technology, 2023, 12(1): 150-154. |
[5] | Ao TANG, Chuanwei YAN. Modelling and simulation of flow batteries: Recent progress and prospects [J]. Energy Storage Science and Technology, 2022, 11(9): 2866-2878. |
[6] | Guohui FENG, Tianyu WANG, Gang WANG. A simulation analysis on the effect of encapsulation mode on the heat storage and release performance of phase change water tank [J]. Energy Storage Science and Technology, 2022, 11(7): 2161-2176. |
[7] | Wenlan YE, Ming ZHAO, Mingyu HU, Yang TIAN. Analysis of heat storage and release performance of tube bundle phase change heat accumulator [J]. Energy Storage Science and Technology, 2022, 11(7): 2151-2160. |
[8] | Zhongbo LI, Jingxiao HAN, Chengcheng WANG, Hui YANG, Na YANG, Shaowu YIN, Li WANG, Lige TONG, Zhiwei TANG, Yulong DING. Simulation and the parameter influence relationship of the discharging process in a thermochemical reactor [J]. Energy Storage Science and Technology, 2022, 11(7): 2133-2140. |
[9] | WU Xiaoling, ZHOU Tao, LIU Yuzhao, DU Yanping, CHEN Huiping, LI Shun. Numerical study on cooling enhancement of micro devices by designing turbulence based hollow micro pin-fin arrays with lateral holes [J]. Energy Storage Science and Technology, 2022, 11(6): 1980-1987. |
[10] | Luyu GAN, Rusong CHEN, Hongyi PAN, Siyuan WU, Xiqian YU, Hong LI. Multiscale research strategy of lithium ion battery safety issue: Experimental and simulation methods [J]. Energy Storage Science and Technology, 2022, 11(3): 852-865. |
[11] | Ang LI, Xiaomeng LI, Lin YANG, Han WANG, Junfan XIANG, Yuhan LIU. Compression force calculation of redox flow battery [J]. Energy Storage Science and Technology, 2022, 11(2): 609-614. |
[12] | Jie XUE, Jun ZHANG, Zhao DU, Rukun HU, Xiaohu YANG. A numerical simulation study on the heat-storage performance of a flat-bottom heat storage tank [J]. Energy Storage Science and Technology, 2022, 11(12): 3855-3861. |
[13] | Yongliang SHEN, Pengwei ZHANG, Shuli LIU. Three-dimensional numerical study of discharging characteristics of a fin-enhanced cascaded latent heat storage system [J]. Energy Storage Science and Technology, 2022, 11(11): 3558-3565. |
[14] | Li SHENG, Xinjie XUE, Yanjun BO, Changying ZHAO. Simulation and analysis of pumped thermal electricity storage system based on phase change energy storage medium [J]. Energy Storage Science and Technology, 2022, 11(11): 3649-3657. |
[15] | Mengyao QI, Yichen HOU, Lei CHEN, Lijun YANG. Numerical simulation of a novel radial all-vanadium flow battery cell [J]. Energy Storage Science and Technology, 2022, 11(10): 3209-3220. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||