Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (6): 1995-2010.doi: 10.19799/j.cnki.2095-4239.2023.0016
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Birong TAN1,2(), Jianhua DU1,2(), Xianghu YE1,2, Xin CAO1,2, Chang QU1,2
Received:
2023-02-06
Revised:
2023-02-24
Online:
2023-06-05
Published:
2023-06-21
Contact:
Jianhua DU
E-mail:tanbirong185@163.com;dujh@hqu.edu.cn
CLC Number:
Birong TAN, Jianhua DU, Xianghu YE, Xin CAO, Chang QU. Overview of SOC estimation methods for lithium-ion batteries based on model[J]. Energy Storage Science and Technology, 2023, 12(6): 1995-2010.
1 | REDDY M V, MAUGER A, JULIEN C M, et al. Brief history of early lithium-battery development[J]. Materials, 2020, 13(8): 1884. |
2 | PARK S, AHN J, KANG T, et al. Review of state-of-the-art battery state estimation technologies for battery management systems of stationary energy storage systems[J]. Journal of Power Electronics, 2020, 20(6): 1526-1540. |
3 | ALI M U, ZAFAR A, NENGROO S H, et al. Towards a smarter battery management system for electric vehicle applications: A critical review of lithium-ion battery state of charge estimation[J]. Energies, 2019, 12(3): 446. |
4 | KIM T, OCHOA J, FAIKA T, et al. An overview of cyber-physical security of battery management systems and adoption of blockchain technology[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2022, 10(1): 1270-1281. |
5 | YU Q Q, WAN C J, LI J F, et al. An open circuit voltage model fusion method for state of charge estimation of lithium-ion batteries[J]. Energies, 2021, 14(7): 1797. |
6 | SOMAKETTARIN N, FUNAKI T. Study on factors for accurate open circuit voltage characterizations in Mn-type Li-ion batteries[J]. Batteries, 2017, 3(4): 8. |
7 | 李哲, 卢兰光, 欧阳明高. 提高安时积分法估算电池SOC精度的方法比较[J]. 清华大学学报(自然科学版), 2010, 50(8): 1293-1296, 1301. |
LI Z, LU L G, OUYANG M G. Comparison of methods for improving SOC estimation accuracy through an ampere-hour integeration approach[J]. Journal of Tsinghua University (Science and Technology), 2010, 50(8): 1293-1296, 1301. | |
8 | ZHANG M Y, FAN X B. Design of battery management system based on improved ampere-hour integration method[J]. International Journal of Electric and Hybrid Vehicles, 2022, 14(1/2): 1. |
9 | HOW D N T, HANNAN M A, HOSSAIN LIPU M S, et al. State of charge estimation for lithium-ion batteries using model-based and data-driven methods: A review[J]. IEEE Access, 2019, 7: 136116-136136. |
10 | HAMETNER C, JAKUBEK S, PROCHAZKA W. Data-driven design of a cascaded observer for battery state of health estimation[J]. IEEE Transactions on Industry Applications, 2018, 54(6): 6258-6266. |
11 | XIONG R, SUN F C, HE H W. Data-driven State-of-Charge estimator for electric vehicles battery using robust extended Kalman filter[J]. International Journal of Automotive Technology, 2014, 15(1): 89-96. |
12 | SHAH A, SHAH K, SHAH C, et al. State of charge, remaining useful life and knee point estimation based on artificial intelligence and Machine learning in lithium-ion EV batteries: A comprehensive review[J]. Renewable Energy Focus, 2022, 42: 146-164. |
13 | 寇发荣, 罗希, 门浩, 等. 基于特征优选与改进极限学习机的锂电池SOC估计[J]. 储能科学与技术, 2023, 12(4): 1234-1243. |
KOU F R, LUO X, MEN H, et al. State of charge estimation of lithium battery based on feature optimization and improved extreme learning machine[J]. Energy Storage Science and Technology, 2023, 12(4): 1234-1243. | |
14 | ATTANAYAKA A M S M H S, KARUNADASA J P, HEMAPALA K T M U. Estimation of state of charge for lithium-ion batteries-A Review[J]. AIMS Energy, 2019, 7(2): 186-210. |
15 | HE Z G, LI Y T, SUN Y Y, et al. State-of-charge estimation of lithium-ion batteries based on an adaptive iterative extended Kalman filter[J]. Journal of Energy Storage, 2021, 39: doi: 10.1016/j.est.2021.102593. |
16 | 张照娓, 郭天滋, 高明裕, 等. 电动汽车锂离子电池荷电状态估算方法研究综述[J]. 电子与信息学报, 2021, 43(7): 1803-1815. |
ZHANG Z W, GUO T Z, GAO M Y, et al. Review of SoC estimation methods for electric vehicle Li-ion batteries[J]. Journal of Electronics & Information Technology, 2021, 43(7): 1803-1815. | |
17 | DEES D W, BATTAGLIA V S, BÉLANGER A. Electrochemical modeling of lithium polymer batteries[J]. Journal of Power Sources, 2002, 110(2): 310-320. |
18 | CHIEW J, CHIN C S, TOH W D, et al. A pseudo three-dimensional electrochemical-thermal model of a cylindrical LiFePO4/graphite battery[J]. Applied Thermal Engineering, 2019, 147: 450-463. |
19 | LIU Y T, MA R, PANG S Z, et al. A nonlinear observer SOC estimation method based on electrochemical model for lithium-ion battery[J]. IEEE Transactions on Industry Applications, 2021, 57(1): 1094-1104. |
20 | LEE J H, CHOI W J. Novel state-of-charge estimation method for lithium polymer batteries using electrochemical impedance spectroscopy[J]. Journal of Power Electronics, 2011, 11(2): 237-243. |
21 | PAVKOVIC D, KRZNAR M, KOMLJENOVIC A, et al. Dual EKF-based state and parameter estimator for a LiFePO4 battery cell[J]. Journal of Power Electronics, 2017, 17(2): 398-410. |
22 | 高铭琨, 徐海亮, 吴明铂. 基于等效电路模型的动力电池SOC估计方法综述[J]. 电气工程学报, 2021, 16(1): 90-102. |
GAO M K, XU H L, WU M B. Overview of SOC estimation methods for power batteries based on equivalent circuit model[J]. Journal of Electrical Engineering, 2021, 16(1): 90-102. | |
23 | MA X A, QIU D F, TAO Q, et al. State of charge estimation of a lithium ion battery based on adaptive Kalman filter method for an equivalent circuit model[J]. Applied Sciences, 2019, 9(13): 2765. |
24 | AHMED R, RAHIMIFARD S, HABIBI S. Offline parameter identification and SOC estimation for new and aged electric vehicles batteries[C]//2019 IEEE Transportation Electrification Conference and Expo (ITEC). June 19-21, 2019, Detroit, MI, USA. IEEE, 2019: 1-6. |
25 | SALAZAR D, GARCIA M. Estimation and comparison of SOC in batteries used in electromobility using the thevenin model and coulomb ampere counting[J]. Energies, 2022, 15(19): 7204. |
26 | DOYLE M, FULLER T F, NEWMAN J. Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell[J]. Journal of the Electrochemical Society, 1993, 140(6): 1526-1533. |
27 | SMITH K A, RAHN C D, WANG C Y. Control oriented 1D electrochemical model of lithium ion battery[J]. Energy Conversion and Management, 2007, 48(9): 2565-2578. |
28 | JOKAR A, RAJABLOO B, DÉSILETS M, et al. Review of simplified Pseudo-two-Dimensional models of lithium-ion batteries[J]. Journal of Power Sources, 2016, 327: 44-55. |
29 | SHRIVASTAVA P, SOON T K, BIN IDRIS M Y I, et al. Overview of model-based online state-of-charge estimation using Kalman filter family for lithium-ion batteries[J]. Renewable and Sustainable Energy Reviews, 2019, 113: doi: 10.1016/j.rser.2019.06.040. |
30 | HARAN B S, POPOV B N, WHITE R E. Determination of the hydrogen diffusion coefficient in metal hydrides by impedance spectroscopy[J]. Journal of Power Sources, 1998, 75(1): 56-63. |
31 | 程麒豫, 张希, 高一钊, 等. 基于降阶电化学模型估算锂离子电池状态[J]. 电池, 2021, 51(2): 110-113. |
CHENG Q Y, ZHANG X, GAO Y Z, et al. Estimating state of Li-ion battery based on reduced-order electrochemical model[J]. Battery Bimonthly, 2021, 51(2): 110-113. | |
32 | SCHMIDT A P, BITZER M, IMRE Á W, et al. Experiment-driven electrochemical modeling and systematic parameterization for a lithium-ion battery cell[J]. Journal of Power Sources, 2010, 195(15): 5071-5080. |
33 | 刘征宇, 杨昆, 魏自红, 等. 包含液相扩散方程简化的锂离子电池电化学模型[J]. 物理学报, 2019, 68(9): 251-258. |
LIU Z Y, YANG K, WEI Z H, et al. Electrochemical model of lithium ion battery with simplified liquid phase diffusion equation[J]. Acta Physica Sinica, 2019, 68(9): 251-258. | |
34 | LI C L, CUI N, WANG C Y, et al. Reduced-order electrochemical model for lithium-ion battery with domain decomposition and polynomial approximation methods[J]. Energy, 2021, 221: doi:10.1016/J.ENERGY.2020.119662. |
35 | 田华, 王伟光, 舒歌群, 等. 基于多尺度、电化学-热耦合模型的锂离子电池生热特性分析[J]. 天津大学学报(自然科学与工程技术版), 2016, 49(7): 734-741. |
TIAN H, WANG W G, SHU G Q, et al. Analysis of heat generation in a Li-ion battery based on a multi-scale and electrochemical-thermal coupled model[J]. Journal of Tianjin University (Science and Technology), 2016, 49(7): 734-741. | |
36 | YANG S C, GAO X L, LI Y L, et al. Minimum lithium plating overpotential control based charging strategy for parallel battery module prevents side reactions[J]. Journal of Power Sources, 2021, 494: doi:10.1016/J.JPOWSOUR.2021.229772. |
37 | 林成涛, 仇斌, 陈全世. 电流输入电动汽车电池等效电路模型的比较[J]. 机械工程学报, 2005, 41(12): 76-81. |
LIN C T, QIU B, CHEN Q S. Comparison of current input equivalent circuit models of electrical vehicle battery[J]. Chinese Journal of Mechanical Engineering, 2005, 41(12): 76-81. | |
38 | NEJAD S, GLADWIN D T, STONE D A. A systematic review of lumped-parameter equivalent circuit models for real-time estimation of lithium-ion battery states[J]. Journal of Power Sources, 2016, 316: 183-196. |
39 | RAMSEY D, GERMAN R, BOUSCAYROL A, et al. Comparison of equivalent circuit battery models for energetic studies on electric vehicles[C]//2020 IEEE Vehicle Power and Propulsion Conference (VPPC). November 18 - December 16, 2020, Gijon, Spain. IEEE, 2021: 1-5. |
40 | HIDALGO-LEON R, URQUIZO J, JACOME-RUIZ P, et al. Modeling battery under discharge using improved thevenin-shepherd electrical battery model[C]//2018 IEEE Vehicle Power and Propulsion Conference (VPPC). August 27-30, 2018, Chicago, IL, USA. IEEE, 2019: 1-5. |
41 | 周娟, 化毅恒, 刘凯, 等. 一种高精度锂离子电池建模方案研究[J]. 中国电机工程学报, 2019, 39(21): 6394-6403. |
ZHOU J, HUA Y H, LIU K, et al. Research on a high-precision modeling scheme for lithium-ion battery[J]. Proceedings of the CSEE, 2019, 39(21): 6394-6403. | |
42 | MILISHCHUK R, BOGODOROVA T. Thevenin-based battery model with ageing effects in modelica[C]//2022 IEEE 21st Mediterranean Electrotechnical Conference (MELECON). June 14-16, 2022, Palermo, Italy. IEEE, 2022: 243-248. |
43 | JI Y J, QIU S L, LI G. Simulation of second-order RC equivalent circuit model of lithium battery based on variable resistance and capacitance[J]. Journal of Central South University, 2020, 27(9): 2606-2613. |
44 | LAI X, ZHENG Y J, SUN T. A comparative study of different equivalent circuit models for estimating state-of-charge of lithium-ion batteries[J]. Electrochimica Acta, 2018, 259: 566-577. |
45 | MADANI S S, SCHALTZ E, KÆR S K. A review of different electric equivalent circuit models and parameter identification methods of lithium-ion batteries[J]. ECS Transactions, 2018, 87(1): 23-37. |
46 | YAN X W, GUO Y W, CUI Y, et al. Electric vehicle battery SOC estimation based on GNL model adaptive Kalman filter[J]. Journal of Physics: Conference Series, 2018, 1087: doi: 10.1088/1742-6596/1087/5/052027. |
47 | STEVANATTO L C, BRUSAMARELLO V J, TAIROV S. Parameter identification and analysis of uncertainties in measurements of lead-acid batteries[J]. IEEE Transactions on Instrumentation and Measurement, 2014, 63(4): 761-768. |
48 | 周星. 锂离子电池模型的参数辨识[D]. 长沙: 国防科学技术大学, 2015. |
ZHOU X. Parameter identification of lithium ion battery model[D].Changsha: National University of Defense Technology, 2015. | |
49 | 王露. 基于自适应卡尔曼滤波的锂电池参数辨识和荷电状态估计[D]. 哈尔滨: 哈尔滨工业大学, 2019. |
WANG L. Prameter identification and state of charge estimation of lithiium battery based on adaptive Kalman filter[D]. Harbin: Harbin Institute of Technology, 2019. | |
50 | KOSTETZER L, NEBL C, STICH M, et al. Physics-based modeling and parameter identification for lithium ion batteries under high current discharge conditions[J]. Journal of the Electrochemical Society, 2020, 167(14): doi: 10.1149/1945-7111/abc726. |
51 | FERAHTIA S, DJEROUI A, REZK H, et al. Optimal parameter identification strategy applied to lithium-ion battery model[J]. International Journal of Energy Research, 2021, 45(11): 16741-16753. |
52 | ZHANG L Q, WANG X Y, CHEN M Y, et al. A fractional-order model of lithium-ion batteries and multi-domain parameter identification method[J]. Journal of Energy Storage, 2022, 50: doi: 10.1016/j.est.2022.104595. |
53 | 郭向伟, 司阳, 高岩, 等. 动力锂电池最优等效电路模型研究[J]. 电子测量与仪器学报, 2021, 35(1): 48-55. |
GUO X W, SI Y, GAO Y, et al. Research on the optimal equivalent circuit model of lithium-ion battery[J]. Journal of Electronic Measurement and Instrumentation, 2021, 35(1): 48-55. | |
54 | LIM K, BASTAWROUS H A, DUONG V H, et al. Fading Kalman filter-based real-time state of charge estimation in LiFePO4 battery-powered electric vehicles[J]. Applied Energy, 2016, 169: 40-48. |
55 | SARRAFAN K, MUTTAQI K, SUTANTO D. Real-time estimation of model parameters and state-of-charge of lithiumion batteries in electric vehicles using recursive least-square with forgetting factor[C]//2018 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES). December 18-21, 2018, Chennai, India. IEEE, 2019: 1-6. |
56 | 王建锋, 张照震, 李平. 基于加权自适应递推最小二乘法与EKF的锂离子电池SOC估计[J]. 汽车技术, 2021(10): 16-22. |
WANG J F, ZHANG Z Z, LI P. State of charge estimation for lithium-ion battery based on adaptive recursive weighted least squares and extended Kalman filter algorithm[J]. Automobile Technology, 2021(10): 16-22. | |
57 | SHI N, CHEN Z W, NIU M, et al. State-of-charge estimation for the lithium-ion battery based on adaptive extended Kalman filter using improved parameter identification[J]. Journal of Energy Storage, 2022, 45: doi: 10.1016/j.est.2021.103518. |
58 | 朱瑞, 段彬, 温法政, 等. 基于分布式最小二乘法的锂离子电池建模及参数辨识[J]. 机械工程学报, 2019, 55(20): 85-93. |
ZHU R, DUAN B, WEN F Z, et al. Lithium-ion battery modeling and parameter identification based on decentralized least squares method[J]. Journal of Mechanical Engineering, 2019, 55(20): 85-93. | |
59 | WANG L M, LU D, LIU Q, et al. State of charge estimation for LiFePO4 battery via dual extended Kalman filter and charging voltage curve[J]. Electrochimica Acta, 2019, 296: 1009-1017. |
60 | 黄凯, 郭永芳, 李志刚. 基于信息反馈粒子群的高精度锂离子电池模型参数辨识[J]. 电工技术学报, 2019, 34(S1): 378-387. |
HUANG K, GUO Y F, LI Z G. High precision parameter identification of lithium-ion battery model based on feedback particle swarm optimization algorithm[J]. Transactions of China Electrotechnical Society, 2019, 34(S1): 378-387. | |
61 | 刘芳, 马杰, 苏卫星, 等. 基于模型参数在线辨识技术的SOC估算方法[J]. 东北大学学报(自然科学版), 2020, 41(11): 1543-1549. |
LIU F, MA J, SU W X, et al. Model parameter online identification based SOC estimation method[J]. Journal of Northeastern University (Natural Science), 2020, 41(11): 1543-1549. | |
62 | 刘胜, 张红梅. 最优估计理论[M]. 北京: 科学出版社, 2011. |
63 | KWAK M. A variable-length scale parameter dependent state of charge estimation of lithium ion batteries by Kalman filters[J]. International Journal of Electrochemical Science, 2022,17: doi: 10.20964/2022.02.18. |
64 | GUSTAFSSON F, HENDEBY G. Some relations between extended and unscented Kalman filters[J]. IEEE Transactions on Signal Processing, 2012, 60(2): 545-555. |
65 | CHENG Z, LV J K, LIU Y L, et al. Estimation of state of charge for lithium-ion battery based on finite difference extended Kalman filter[J]. Journal of Applied Mathematics, 2014, 2014: 1-10. |
66 | 潘海鸿, 吕治强, 李君子, 等. 基于灰色扩展卡尔曼滤波的锂离子电池荷电状态估算[J]. 电工技术学报, 2017, 32(21): 1-8. |
PAN H H, LÜ Z Q, LI J Z, et al. Estimation of lithium-ion battery state of charge based on grey prediction model-extended Kalman filter[J]. Transactions of China Electrotechnical Society, 2017, 32(21): 1-8. | |
67 | SUN D M, YU X L, WANG C M, et al. State of charge estimation for lithium-ion battery based on an Intelligent Adaptive Extended Kalman Filter with improved noise estimator[J]. Energy, 2021, 214: doi: 10.1016/j.energy.2020.119025. |
68 | ADAIKKAPPAN M, SATHIYAMOORTHY N. A real time state of charge estimation using Harris Hawks optimization-based filtering approach for electric vehicle power batteries[J]. International Journal of Energy Research, 2022, 46(7): 9293-9309. |
69 | MAHESHWARI A, NAGESWARI S. Real-time state of charge estimation for electric vehicle power batteries using optimized filter[J]. Energy, 2022, 254: doi: 10.1016/j.energy.2022.124328. |
70 | AUNG H, LOW K S. Temperature dependent state-of-charge estimation of lithium ion battery using dual spherical unscented Kalman filter[J]. IET Power Electronics, 2015, 8(10): 2026-2033. |
71 | PARTOVIBAKHSH M, LIU G J. An adaptive unscented Kalman filtering approach for online estimation of model parameters and state-of-charge of lithium-ion batteries for autonomous mobile robots[J]. IEEE Transactions on Control Systems Technology, 2015, 23(1): 357-363. |
72 | NGUYEN T T, KHAN A B, KO Y, et al. An accurate state of charge estimation method for lithium iron phosphate battery using a combination of an unscented Kalman filter and a particle filter[J]. Energies, 2020, 13(17): 4536. |
73 | 费亚龙, 谢长君, 汤泽波, 等. 基于平方根无迹卡尔曼滤波的锂电池状态估计[J]. 中国电机工程学报, 2017, 37(15): 4514-4520, 4593. |
FEI Y L, XIE C J, TANG Z B, et al. State-of-charge estimation based on square root unscented Kalman filter algorithm for Li-ion batteries[J]. Proceedings of the CSEE, 2017, 37(15): 4514-4520, 4593. | |
74 | HAVANGI R. Adaptive robust unscented Kalman filter with recursive least square for state of charge estimation of batteries[J]. Electrical Engineering, 2022, 104(2): 1001-1017. |
75 | 章军辉, 李庆, 陈大鹏, 等. 基于自适应UKF的锂离子动力电池状态联合估计[J]. 东北大学学报(自然科学版), 2020, 41(11): 1557-1563. |
ZHANG J H, LI Q, CHEN D P, et al. State co-estimation algorithm for Li-ion power batteries based on adaptive unscented Kalman filters[J]. Journal of Northeastern University (Natural Science), 2020, 41(11): 1557-1563. | |
76 | 程泽, 杨磊, 孙幸勉. 基于自适应平方根无迹卡尔曼滤波算法的锂离子电池SOC和SOH估计[J]. 中国电机工程学报, 2018, 38(8): 2384-2393, 2548. |
CHENG Z, YANG L, SUN X M. State of charge and state of health estimation of Li-ion batteries based on adaptive square-root unscented Kalman filters[J]. Proceedings of the CSEE, 2018, 38(8): 2384-2393, 2548. | |
77 | PENG N A, ZHANG S Z, GUO X, et al. Online parameters identification and state of charge estimation for lithium-ion batteries using improved adaptive dual unscented Kalman filter[J]. International Journal of Energy Research, 2021, 45(1): 975-990. |
78 | ARASARATNAM I, HAYKIN S. Cubature Kalman filters[J]. IEEE Transactions on Automatic Control, 2009, 54(6): 1254-1269. |
79 | LOUKIL J, MASMOUDI F, DERBEL N. A real-time estimator for model parameters and state of charge of lead acid batteries in photovoltaic applications[J]. Journal of Energy Storage, 2021, 34: doi: 10.1016/j.est.2020.102184. |
80 | WADI A L, ABDEL-HAFEZ M, HUSSEIN A A. Computationally efficient state-of-charge estimation in Li-ion batteries using enhanced dual-kalman filter[J]. Energies, 2022, 15(10): 3717. |
81 | CUI X Y, JING Z, LUO M J, et al. A new method for state of charge estimation of lithium-ion batteries using square root cubature Kalman filter[J]. Energies, 2018, 11(1): 209. |
82 | LINGHU J Q, KANG L Y, LIU M, et al. Estimation for state-of-charge of lithium-ion battery based on an adaptive high-degree cubature Kalman filter[J]. Energy, 2019, 189: doi: 10.1016/j.energy.2019.116204. |
83 | ELSAYED A, GRIMBLE M J. A new approach to the H ∞ design of optimal digital linear filters[J]. IMA Journal of Mathematical Control and Information, 1989, 6(2): 233-251. |
84 | ALFI A, CHARKHGARD M, HADDAD ZARIF M. Hybrid state of charge estimation for lithium-ion batteries: Design and implementation[J]. IET Power Electronics, 2014, 7(11): 2758-2764. |
85 | XIONG R, YU Q Q, WANG L Y, et al. A novel method to obtain the open circuit voltage for the state of charge of lithium ion batteries in electric vehicles by using H infinity filter[J]. Applied Energy, 2017, 207: 346-353. |
86 | ZHANG S S, WAN Y H, DING J E, et al. State of charge (SOC) estimation based on extended exponential weighted moving average H∞ filtering[J]. Energies, 2021, 14(6): 1655. |
87 | 孙冬, 陈息坤. 基于离散滑模观测器的锂电池荷电状态估计[J]. 中国电机工程学报, 2015, 35(1): 185-191. |
SUN D, CHEN X K. Charge state estimation of Li-ion batteries based on discrete-time sliding mode observers[J]. Proceedings of the CSEE, 2015, 35(1): 185-191. | |
88 | 隋欣, 陈永翀, 张晓虎, 等. 基于改进滑模观测器的锂离子电池荷电状态估计方法[J]. 电工电能新技术, 2018, 37(12): 73-82. |
SUI X, CHEN Y C, ZHANG X H, et al. Improved sliding mode observer for state of charge estimation of lithium-ion battery[J]. Advanced Technology of Electrical Engineering and Energy, 2018, 37(12): 73-82. | |
89 | NATH A, GUPTA R, MEHTA R, et al. Attractive ellipsoid sliding mode observer design for state of charge estimation of lithium-ion cells[J]. IEEE Transactions on Vehicular Technology, 2020, 69(12): 14701-14712. |
90 | LIU F, MA J, SU W X, et al. SOC estimation based on data driven exteaded Kalman filter algorithm for power battery of electric vehicle and plug-in electric vehicle[J]. Journal of Central South University, 2019, 26(6): 1402-1415. |
91 | GIM J, CHOI W, AHN C. Design of unscented Kalman filter with gated recurrent units-based battery model for SOC estimation[J]. Transaction of the Korean Society of Automotive Engineers, 2022, 30(1): 61-68. |
92 | 王晓兰, 靳皓晴, 刘祥远. 基于融合模型的锂离子电池荷电状态在线估计[J]. 工程科学学报, 2020, 42(9): 1200-1208. |
WANG X L, JIN H Q, LIU X Y. Online estimation of the state of charge of a lithium-ion battery based on the fusion model[J]. Chinese Journal of Engineering, 2020, 42(9): 1200-1208. | |
93 | 陈清炀, 何映晖, 余官定, 等. 模型与数据双驱动的锂电池状态精准估计[J]. 储能科学与技术, 2023, 12(1): 209-217. |
CHEN Q Y, HE Y H, YU G D, et al. Accurate state estimation of lithium battery driven by model and data[J]. Energy Storage Science and Technology, 2023, 12(1): 209-217. | |
94 | 朱文凯, 周星, 刘亚杰, 等. 基于递推门控循环单元神经网络的锂离子电池荷电状态实时估计方法[J]. 储能科学与技术, 2023, 12(2): 570-578. |
ZHU W K, ZHOU X, LIU Y J, et al. Real-time estimation method of state of charge of lithium ion battery based on neural network of step-by-step control cycle unit[J]. Energy Storage Science and Technology, 2023, 12(2): 570-578. | |
95 | 任碧莹, 孙佳, 孙向东, 等. 基于KF-SRUKF算法的锂离子电池荷电状态估计[J]. 电工电能新技术, 2022, 41(10): 1-10. |
REN B Y, SUN J, SUN X D, et al. Estimation of state of charge of lithium-ion battery based on KF-SRUKF algorithm[J]. Advanced Technology of Electrical Engineering and Energy, 2022, 41(10): 1-10. | |
96 | WRIGHT R B, MOTLOCH C G, BELT J R, et al. Calendar- and cycle-life studies of advanced technology development program generation 1 lithium-ion batteries[J]. Journal of Power Sources, 2002, 110(2): 445-470. |
97 | ISHIZAKI R, LIN L, FUKUI M. An accurate SOC estimation method for lithium-ion batteries which considers thermal variation[J]. Electrochemistry, 2015, 83(10): 852-854. |
98 | GOMEZ J, NELSON R, KALU E E, et al. Equivalent circuit model parameters of a high-power Li-ion battery: Thermal and state of charge effects[J]. Journal of Power Sources, 2011, 196(10): 4826-4831. |
99 | TANIM T R, RAHN C D, WANG C Y. State of charge estimation of a lithium ion cell based on a temperature dependent and electrolyte enhanced single particle model[J]. Energy, 2015, 80: 731-739. |
100 | 申江卫. 车载锂电池宽温度全寿命荷电状态估算研究[D]. 昆明: 昆明理工大学, 2021. |
SHEN J W. Study on estimation of state of charge of vehicle lithium battery in wide temperature and full life[D].Kunming: Kunming University of Science and Technology, 2021. | |
101 | ZHENG X, ZHANG Z Q. State of charge estimation at different temperatures based on dynamic thermal model for lithium-ion batteries[J]. Journal of Energy Storage, 2022, 48: doi: 10.1016/j.est.2022.104011. |
102 | 姜余, 陈自强. 可变环境温度下锂离子电池平均温度估计[J]. 上海交通大学学报, 2021, 55(7): 781-790. |
JIANG Y, CHEN Z Q. Average temperature estimation for lithium-ion batteries at variable environment temperature[J]. Journal of Shanghai Jiao Tong University, 2021, 55(7): 781-790. | |
103 | OUYANG K L, FAN Y Q, YAZDI M, et al. Data-driven-based internal temperature estimation for lithium-ion battery under variant state-of-charge via electrochemical impedance spectroscopy[J]. Energy Technology, 2022, 10(3): doi: 10.1002/ente.202100910. |
104 | STROE A I, KNAP V, STROE D I. Comparison of lithium-ion battery performance at beginning-of-life and end-of-life[J]. Microelectronics Reliability, 2018, 88/89/90: 1251-1255. |
105 | MANDLI A R, KAUSHIK A, PATIL R S, et al. Analysis of the effect of resistance increase on the capacity fade of lithium ion batteries[J]. International Journal of Energy Research, 2019, 43(6): 2044-2056. |
106 | BARCELLONA S, COLNAGO S, DOTELLI G, et al. Aging effect on the variation of Li-ion battery resistance as function of temperature and state of charge[J]. Journal of Energy Storage, 2022, 50: doi: 10.1016/j.est.2022.104658. |
107 | BAGHDADI I, BRIAT O, DELÉTAGE J Y, et al. Lithium battery aging model based on Dakin's degradation approach[J]. Journal of Power Sources, 2016, 325: 273-285. |
108 | ALLAM A, ONORI S. Online capacity estimation for lithium-ion battery cells via an electrochemical model-based adaptive interconnected observer[J]. IEEE Transactions on Control Systems Technology, 2021, 29(4): 1636-1651. |
109 | WU Y, ZHAO H, WANG Y C, et al. Research on life cycle SOC estimation method of lithium-ion battery oriented to decoupling temperature[J]. Energy Reports, 2022, 8: 4182-4195. |
110 | DU C Q, SHAO J B, WU D M, et al. Research on co-estimation algorithm of SOC and SOH for lithium-ion batteries in electric vehicles[J]. Electronics, 2022, 11(2): 181. |
111 | 刘璐, 牛萌, 郑伟杰, 等. 考虑内部参数不一致性的储能系统用锂电池组建模[J]. 电力系统自动化, 2021, 45(19): 15-23. |
LIU L, NIU M, ZHENG W J, et al. Modeling of lithium-ion battery packs for energy storage system considering inconsistency of internal battery parameters[J]. Automation of Electric Power Systems, 2021, 45(19): 15-23. | |
112 | GHAEMINEZHAD N, OUYANG Q, HU X S, et al. Active cell equalization topologies analysis for battery packs: A systematic review[J]. IEEE Transactions on Power Electronics, 2021, 36(8): 9119-9135. |
113 | TURKSOY A, TEKE A, ALKAYA A. A comprehensive overview of the dc-dc converter-based battery charge balancing methods in electric vehicles[J]. Renewable and Sustainable Energy Reviews, 2020, 133: doi: 10.1016/j.rser.2020.110274. |
114 | HUA Y, ZHOU S D, CUI H G, et al. A comprehensive review on inconsistency and equalization technology of lithium-ion battery for electric vehicles[J]. International Journal of Energy Research, 2020, 44(14): 11059-11087. |
115 | HEIN T, ZIEGLER A, OESER D, et al. A capacity-based equalization method for aged lithium-ion batteries in electric vehicles[J]. Electric Power Systems Research, 2021, 191: doi: 10.1016/j.epsr.2020.106898. |
116 | MCCURLIE L, PREINDL M, EMADI A. Fast model predictive control for redistributive lithium-ion battery balancing[J]. IEEE Transactions on Industrial Electronics, 2017, 64(2): 1350-1357. |
117 | SONG L J, LIANG T Y, LU L G, et al. Lithium-ion battery pack equalization based on charging voltage curves[J]. International Journal of Electrical Power & Energy Systems, 2020, 115: doi: 10.1016/j.ijepes.2019.105516. |
118 | WANG Y J, ZHANG C B, CHEN Z H, et al. A novel active equalization method for lithium-ion batteries in electric vehicles[J]. Applied Energy, 2015, 145: 36-42. |
119 | MA Y, DUAN P, SUN Y S, et al. Equalization of lithium-ion battery pack based on fuzzy logic control in electric vehicle[J]. IEEE Transactions on Industrial Electronics, 2018, 65(8): 6762-6771. |
120 | GOGOANA R, PINSON M B, BAZANT M Z, et al. Internal resistance matching for parallel-connected lithium-ion cells and impacts on battery pack cycle life[J]. Journal of Power Sources, 2014, 252: 8-13. |
121 | 李腾, 林成涛, 陈全世. 磷酸铁锂电池组成组过程的不一致性分析[J]. 清华大学学报(自然科学版), 2012, 52(7): 1001-1006. |
LI T, LIN C T, CHEN Q S. Inconsistency analysis of LiFePO4 battery packing[J]. Journal of Tsinghua University (Science and Technology), 2012, 52(7): 1001-1006. | |
122 | MIYATAKE S, SUSUKI Y, HIKIHARA T, et al. Discharge characteristics of multicell lithium-ion battery with nonuniform cells[J]. Journal of Power Sources, 2013, 241: 736-743. |
[1] | Ya CHEN, Liyun FAN, Jingxue LI, Meisi LI, Chao XU, Yuanqi GU. Research on heat dissipation of lithium-ion batteries with secondary flow serpentine channel [J]. Energy Storage Science and Technology, 2023, 12(6): 1880-1889. |
[2] | Xijiang SHEN, Qiangling DUAN, Peng QIN, Qingsong WANG, Jinhua SUN. Experimental study on thermal runaway mitigation and heat transfer characteristics of ternary lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(6): 1862-1871. |
[3] | Lingfeng HUANG, Dongmei HAN, Sheng HUANG, Shuanjin WANG, Min XIAO, Yuezhong MENG. Research progress of polymer electrolytes containing organoboron for lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(6): 1815-1830. |
[4] | Jidong ZHANG, Zhan YANG, Jianguo HUANG. Fabrication and electrochemical performance of micro-nanostructured C/TiO2/CuMoO4 fibrous composite based on natural cellulose [J]. Energy Storage Science and Technology, 2023, 12(5): 1616-1624. |
[5] | Yuanchang DONG, Xiaoqiong PANG, Jianfang JIA, Yuanhao SHI, Jie WEN, Xiao LI, Xin ZHANG. Remaining useful life prediction of lithium-ion batteries based on SVD-SAE-GPR [J]. Energy Storage Science and Technology, 2023, 12(4): 1257-1267. |
[6] | Feng LIU, Haizhong CHEN. Lithium-ion battery state prediction based on CEEMDAN and ISOA-ELM [J]. Energy Storage Science and Technology, 2023, 12(4): 1244-1256. |
[7] | Hongxin WU, Aikui LI, Cun DONG, Shumin SUN, Guanglei LI, Shibo WANG. Control strategy for wind power fluctuation stabilization with energy storage and frequency modulation reserve [J]. Energy Storage Science and Technology, 2023, 12(4): 1194-1203. |
[8] | Farong KOU, Xi LUO, Hao MEN, Yangjuan GUO, Tianxiang YANG. State of charge estimation of lithium battery based on feature optimization and improved extreme learning machine [J]. Energy Storage Science and Technology, 2023, 12(4): 1234-1243. |
[9] | Shugang LIU, Bo MENG, Zhenglong LI, Yaxiong YANG, Jian CHEN. Electrochemical performance of chemical prelithiated Li x (Mg, Ni, Zn, Cu, Co) 1-x O high-entropy oxide as anode material for lithium ion battery [J]. Energy Storage Science and Technology, 2023, 12(3): 743-753. |
[10] | Zheng CHEN, Zhide WANG, Wenbiao MOU, Peiwang ZHU, Gang XIAO. State-of-charge estimation of lead-carbon batteries based on the PNGV model and an adaptive Kalman filter algorithm [J]. Energy Storage Science and Technology, 2023, 12(3): 941-950. |
[11] | Xiuliang CHANG, Xichao LI, Longzhou JIA, Shouli WEI, Jinghao WANG, Zuoqiang DAI, Lili ZHENG. Heat generation characteristics of overcharged cyclic aging batteries [J]. Energy Storage Science and Technology, 2023, 12(3): 685-697. |
[12] | Yulong ZHANG, Weiling LUAN, Senming WU. Quantitative analysis of the lithium plating-stripping process of lithium-ion batteries using external characteristic methods [J]. Energy Storage Science and Technology, 2023, 12(2): 529-535. |
[13] | Huimin ZHANG, Jing WANG, Yibo WANG, Jiaxin ZHENG, Jingyi QIU, Gaoping CAO, Hao ZHANG. Multiscale modeling of the SEI of lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(2): 366-382. |
[14] | Wenkai ZHU, Xing ZHOU, Yajie LIU, Tao ZHANG, Yuanming SONG. Real time state of charge estimation method of lithium-ion battery based on recursive gated recurrent unit neural network [J]. Energy Storage Science and Technology, 2023, 12(2): 570-578. |
[15] | Lulu LI, Zhengshun TAO, Tinglong PAN, Weilin YANG, Guanyang HU. Research on fractional modeling and SOC estimation strategy for lithium batteries [J]. Energy Storage Science and Technology, 2023, 12(2): 544-551. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||