Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (8): 2370-2381.doi: 10.19799/j.cnki.2095-4239.2023.0177
• Energy Storage Materials and Devices • Previous Articles Next Articles
Zinan ZHANG1,2(), Jian CHEN1()
Received:
2023-03-27
Revised:
2023-04-08
Online:
2023-08-05
Published:
2023-08-23
Contact:
Jian CHEN
E-mail:zinan@dicp.ac.cn;chenjian@dicp.ac.cn
CLC Number:
Zinan ZHANG, Jian CHEN. Preparation and property evaluation of Nb-doped Na3V2O2 (PO4 ) 2F hollow microspheres as cathode materials for sodium-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(8): 2370-2381.
Table 1
Lattice parameters of NVOPF, NVNOPF-0.05, NVNOPF-0.10 and NVNOPF-0.15"
样品 | a=b/Å | c/Å | V/Å3 | Occ.(Na 1) | Occ.(Na 2) | Occ.(V) | Occ.(Nb) |
---|---|---|---|---|---|---|---|
NVOPF | 6.36958 | 10.60727 | 430.353 | 0.380 | 0.190 | 1.000 | 0 |
NVNOPF-0.05 | 6.37247 | 10.61682 | 431.132 | 0.380 | 0.190 | 0.975 | 0.025 |
NVNOPF-0.10 | 6.38463 | 10.62043 | 432.926 | 0.380 | 0.190 | 0.950 | 0.050 |
NVNOPF-0.15 | 6.38841 | 10.62859 | 433.772 | 0.380 | 0.190 | 0.925 | 0.075 |
1 | OBAMA B. The irreversible momentum of clean energy[J]. Science, 2017, 355(6321): 126-129. |
2 | SCROSATI B, GARCHE J. Lithium batteries: Status, prospects and future[J]. Journal of Power Sources, 2010, 195(9): 2419-2430. |
3 | CRABTREE G. Perspective: The energy-storage revolution[J]. Nature, 2015, 526(7575): doi: 10.1038/526S92a. |
4 | LARCHER D, TARASCON J M. Towards greener and more sustainable batteries for electrical energy storage[J]. Nature Chemistry, 2015, 7(1): 19-29. |
5 | LIU C, LI F, MA L P, et al. Advanced materials for energy storage[J]. Advanced Materials, 2010, 22(8): doi: 10.1002/adma.200903328. |
6 | GUPTA P, PUSHPAKANTH S, HAIDER M A, et al. Understanding the design of cathode materials for Na-ion batteries[J]. ACS Omega, 2022, 7(7): 5605-5614. |
7 | MAO Z F, WANG R, HE B B, et al. Large-area, uniform, aligned arrays of Na3(VO)2(PO4)2F on carbon nanofiber for quasi-solid-state sodium-ion hybrid capacitors[J]. Small, 2019, 15(36): doi: 10.1002/smll.201902466. |
8 | XIAO J, LI X, TANG K K, et al. Recent progress of emerging cathode materials for sodium ion batteries[J]. Materials Chemistry Frontiers, 2021, 5(10): 3735-3764. |
9 | BAI Q A, YANG L F, CHEN H L, et al. Computational studies of electrode materials in sodium-ion batteries[J]. Advanced Energy Materials, 2018, 8(17): doi: 10.1002/aenm.201702998. |
10 | YAN R B, ZHAN G H, LIAO W H, et al. Uniform Na3V2(PO4)2O2F microcubes enhanced by ionic liquid-modified multi-walled carbon nanotubes as a superior cathode for sodium-ion batteries[J]. Electrochimica Acta, 2023, 439: doi: 10.1016/j.electacta.2022. 141671. |
11 | JIN H Y, LIU M, UCHAKER E, et al. Nanoporous carbon leading to the high performance of a Na3V2O2(PO4)2F@carbon/graphene cathode in a sodium ion battery[J]. CrystEngComm, 2017, 19(30): 4287-4293. |
12 | YIN Y M, PEI C Y, LIAO X B, et al. Revealing the multi-electron reaction mechanism of Na3V2O2 (PO4)2F towards improved lithium storage[J]. ChemSusChem, 2021, 14(14): 2984-2991. |
13 | LI X Y, JIANG S L, LI S Y, et al. Overcoming the rate-determining kinetics of the Na3V2O2(PO4)2F cathode for ultrafast sodium storage by heterostructured dual-carbon decoration[J]. Journal of Materials Chemistry A, 2021, 9(19): 11827-11838. |
14 | ZHANG L L, LIU J, WEI C, et al. N/P-dual-doped carbon-coated Na3V2(PO4)2O2F microspheres as a high-performance cathode material for sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(3): 3670-3680. |
15 | LEE J, PARK S, PARK Y, et al. Chromium doping into NASICON-structured Na3V2(PO4)3 cathode for high-power Na-ion batteries[J]. Chemical Engineering Journal, 2021, 422: doi: 10.1016/j.cej.2021. 130052. |
16 | DU P, MI K, HU F D, et al. Mn-doped hollow Na3V2O2(PO4)2F as a high performance cathode material for sodium ion batteries[J]. European Journal of Inorganic Chemistry, 2021, 2021(13): 1256-1262. |
17 | LI H X, JIN T, CHEN X B, et al. Rational architecture design enables superior Na storage in greener NASICON-Na4 MnV(PO4)3 cathode[J]. Advanced Energy Materials, 2018, 8(24): doi: 10.1002/aenm.201801418. |
18 | WANG S T, ZHAO L J, DONG Y H, et al. Pre-zeolite framework super-MIEC anodes for high-rate lithium-ion batteries[J]. Energy & Environmental Science, 2023, 16(1): 241-251. |
19 | FANG Y J, YU X Y, LOU X W D. A practical high-energy cathode for sodium-ion batteries based on uniform P2-Na0.7CoO2 microspheres[J]. Angewandte Chemie International Edition, 2017, 56(21): 5801-5805. |
20 | QI Y R, MU L Q, ZHAO J M, et al. pH-regulative synthesis of Na3(VPO4)2F3 nanoflowers and their improved Na cycling stability[J]. Journal of Materials Chemistry A, 2016, 4(19): 7178-7184. |
21 | QI Y R, TONG Z Z, ZHAO J M, et al. Scalable room-temperature synthesis of multi-shelled Na3(VOPO4)2F microsphere cathodes[J]. Joule, 2018, 2(11): 2348-2363. |
22 | GUO F F, FAN M H, JIN P P, et al. Precursor-mediated synthesis of double-shelled V2O5 hollow nanospheres as cathode material for lithium-ion batteries[J]. CrystEngComm, 2016, 18(22): 4068-4073. |
23 | LIN B, LI Q F, LIU B D, et al. Biochemistry-directed hollow porous microspheres: Bottom-up self-assembled polyanion-based cathodes for sodium ion batteries[J]. Nanoscale, 2016, 8(15): 8178-8188. |
24 | LI Y, CHEN M H, LIU B, et al. Heteroatom doping: An effective way to boost sodium ion storage[J]. Advanced Energy Materials, 2020, 10(27): doi: 10.1002/aenm.202000927. |
25 | SUN X F, WANG Z K, HU Q D, et al. Oxygen-tuned Na3V2(PO4)2F3-2 yO2 y (0<y<1) as high-rate cathode materials for rechargeable sodium batteries[J]. ACS Applied Energy Materials, 2022, 5(12): 15799-15808. |
26 | HE J R, TAO T, YANG F, et al. Optimizing the electrolyte systems for Na3(VO1- xPO4)2F1+2 x (0≤x≤1) cathode and understanding their interfacial chemistries towards high-rate sodium-ion batteries[J]. ChemSusChem, 2022, 15(8): doi: 10.1002/cssc.202200480. |
27 | ZHAO X X, GU Z Y, GUO J Z, et al. Dual anionic substitution engineering for an advanced NASICON phosphate cathode in sodium-ion batteries[J]. Materials Chemistry Frontiers, 2021, 5(15): 5671-5678. |
28 | GU Z Y, GUO J Z, SUN Z H, et al. Air/water/temperature-stable cathode for all-climate sodium-ion batteries[J]. Cell Reports Physical Science, 2021, 2(12): doi: 10.1016/j.xcrp.2021.100665. |
29 | ZHANG Y, GUO S R, XU H Y. Synthesis of uniform hierarchical Na3V1.95Mn0.05(PO4)2F3@C hollow microspheres as a cathode material for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2018, 6(10): 4525-4534. |
30 | LI X, HUANG Y Y, WANG J S, et al. High valence Mo-doped Na3V2(PO4)3/C as a high rate and stable cycle-life cathode for sodium battery[J]. Journal of Materials Chemistry A, 2018, 6(4): 1390-1396. |
31 | LIU X H, FENG G L, WU Z G, et al. Enhanced sodium storage property of sodium vanadium phosphate via simultaneous carbon coating and Nb5+ doping[J]. Chemical Engineering Journal, 2020, 386: doi: 10.1016/j.cej.2019.123953. |
32 | YUN Y S, JIN H J. Sulfur-doped, reduced graphene oxide nanoribbons for sodium-ion batteries[J]. Materials Letters, 2017, 198: 106-109. |
33 | ZHANG Y Z, CHEN L, MENG Y, et al. Sodium storage in fluorine-rich mesoporous carbon fabricated by low-temperature carbonization of polyvinylidene fluoride with a silica template[J]. RSC Advances, 2016, 6(112): 110850-110857. |
34 | WANG H M, WANG H X, CHEN Y, et al. Phosphorus-doped graphene and (8, 0) carbon nanotube: Structural, electronic, magnetic properties, and chemical reactivity[J]. Applied Surface Science, 2013, 273: 302-309. |
35 | MASSA W, YAKUBOVICH O V, DIMITROVA O V. Crystal structure of a new sodium vanadyl(IV) fluoride phosphate Na3{V2O2F[PO4]2}[J]. Solid State Sciences, 2002, 4(4): 495-501. |
36 | LI Z F, LUO C Y, WANG C X, et al. Effects of Nb substitution on structure and electrochemical properties of LiNi0.7Mn0.3O2 cathode materials[J]. Journal of Solid State Electrochemistry, 2018, 22(9): 2811-2820. |
37 | NIU Y B, ZHANG Y, XU M W. A review on pyrophosphate framework cathode materials for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2019, 7(25): 15006-15025. |
38 | YOO C Y, HONG K P, KIM S J. A new layered perovskite, KSrNb2O6F, by powder neutron diffraction[J]. Acta Crystallographica Section C Crystal Structure Communications, 2007, 63(8): doi: 10.1107/s0108270107029563. |
39 | LING M X, LI F, YI H M, et al. Superior Na-storage performance of molten-state-blending-synthesized monoclinic NaVPO4F nanoplates for Na-ion batteries[J]. Journal of Materials Chemistry A, 2018, 6(47): 24201-24209. |
40 | GUO J Z, WANG P F, WU X L, et al. High-energy/power and low-temperature cathode for sodium-ion batteries: in situ XRD study and superior full-cell performance[J]. Advanced Materials, 2017, 29(33): doi: 10.1002/adma.201701968. |
41 | YANG H, WU X L, CAO M H, et al. Solvothermal synthesis of LiFePO4 hierarchically dumbbell-like microstructures by nanoplate self-assembly and their application as a cathode material in lithium-ion batteries[J]. The Journal of Physical Chemistry C, 2009, 113(8): 3345-3351. |
42 | XIAO Y H, LIU S J, LI F, et al. 3D hierarchical Co3O4 Twin-spheres with an urchin-like structure: Large-scale synthesis, multistep-splitting growth, and electrochemical pseudocapacitors[J]. Advanced Functional Materials, 2012, 22(19): 4052-4059. |
43 | CHEN J, WANG T, CHEN C, et al. Heteroatom doping hollow vanadium oxide/carbon composites as universal anode materials for efficient alkali-metal ion storage[J]. Carbon, 2022, 192: 30-40. |
44 | KIM D H, KIM J. Synthesis of LiFePO4 nanoparticles in polyol medium and their electrochemical properties[J]. Electrochemical and Solid-State Letters, 2006, 9(9): doi: 10.1149/1.2218308. |
45 | ARAGÓN M J, GUTIÉRREZ J, KLEE R, et al. On the effect of carbon content for achieving a high performing Na3V2(PO4)3/C nanocomposite as cathode for sodium-ion batteries[J]. Journal of Electroanalytical Chemistry, 2017, 784: 47-54. |
46 | ZHU Q, WANG M, NAN B, et al. Core/shell nanostructured Na3V2(PO4)3/C/TiO2 composite nanofibers as a stable anode for sodium-ion batteries[J]. Journal of Power Sources, 2017, 362: 147-159. |
47 | ZHAO L N, ZHAO H L, DU Z H, et al. Delicate lattice modulation enables superior Na storage performance of Na3V2(PO4)3 as both an anode and cathode material for sodium-ion batteries: Understanding the role of calcium substitution for vanadium[J]. Journal of Materials Chemistry A, 2019, 7(16): 9807-9814. |
48 | CHENG Q S, LIANG J W, LIN N, et al. Porous TiNb2O7 nanospheres as ultra long-life and high-power anodes for lithium-ion batteries[J]. Electrochimica Acta, 2015, 176: 456-462. |
49 | ZHAO X X, GU Z Y, LI W H, et al. Temperature-dependent electrochemical properties and electrode kinetics of Na3V2(PO4)2O2F cathode for sodium-ion batteries with high energy density[J]. Chemistry-A European Journal, 2020, 26(35): 7823-7830. |
50 | YAN L T, CHEN G, SARKER S, et al. Ultrafine Nb2O5 nanocrystal coating on reduced graphene oxide as anode material for high performance sodium ion battery[J]. ACS Applied Materials & Interfaces, 2016, 8(34): 22213-22219. |
51 | KRETSCHMER K, SUN B, ZHANG J Q, et al. 3D interconnected carbon fiber network-enabled ultralong life Na3V2(PO4)3@Carbon paper cathode for sodium-ion batteries[J]. Small, 2017, 13(9): doi: 10.1002/smll.201603318. |
52 | WANG X Y, HAO H, LIU J L, et al. A novel method for preparation of macroposous lithium nickel manganese oxygen as cathode material for lithium ion batteries[J]. Electrochimica Acta, 2011, 56(11): 4065-4069. |
53 | LI S J, GE P, ZHANG C Y, et al. The electrochemical exploration of double carbon-wrapped Na3V2(PO4)3: Towards long-time cycling and superior rate sodium-ion battery cathode[J]. Journal of Power Sources, 2017, 366: 249-258. |
54 | ZHANG D X, WANG J, DONG K Z, et al. First principles investigation on the elastic and electronic properties of Mn, Co, Nb, Mo doped LiFePO4[J]. Computational Materials Science, 2018, 155: 410-415. |
55 | LI X T, SHAO Z B, LIU K R, et al. Enhancement of Nb-doping on the properties of LiFePO4/C prepared via a high-temperature ball milling-based method[J]. Journal of Solid State Electrochemistry, 2019, 23(2): 465-473. |
56 | KOYAMA C, NOZAWA J, MAEDA K, et al. Investigation of defect structure of impurity-doped lithium niobate by combining thermodynamic constraints with lattice constant variations[J]. Journal of Applied Physics, 2015, 117(1): doi: 10.1063/1.4905286. |
57 | CHEN B F, PENG Z B, YUAN Z Y. Constructing sandwich structure of Nb-substituted Na3V2(PO4)3/C nanoparticles enwrapped on three-dimensional graphene with superior sodium storage property[J]. Ceramics International, 2022, 48(22): 33957-33966. |
58 | BI L N, LIU X Q, LI X Y, et al. Modulation of the crystal structure and ultralong life span of a Na3V2(PO4)3-based cathode for a high-performance sodium-ion battery by niobium-vanadium substitution[J]. Industrial & Engineering Chemistry Research, 2020, 59(48): 21039-21046. |
[1] | Shenran ZHANG, Lihuan XU, Chang SU. Influence of different carbon contents on the electrochemical performance of SiO/C anode [J]. Energy Storage Science and Technology, 2023, 12(6): 1784-1793. |
[2] | Yuhua BIAN, Zhaomeng LIU, Xuanwen GAO, Jianguo LI, Da WANG, Shangzhuo LI, Wenbin LUO. Role of CoS2/NC in ether-based electrolytes as high-performance anodes for sodium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(5): 1500-1509. |
[3] | Wenzhe HAN, Qingsong LAI, Xuanwen GAO, Wenbin LUO. Advances toward manganese-based layered oxide cathodes for potassium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(5): 1364-1379. |
[4] | Shedong LI, Yingying SONG, Yuhua BIAN, Zhaomeng LIU, Xuanwen GAO, Wenbin LUO. Status and challenges in the development of room-temperature sodium-sulfur batteries [J]. Energy Storage Science and Technology, 2023, 12(5): 1315-1331. |
[5] | Shugang LIU, Bo MENG, Zhenglong LI, Yaxiong YANG, Jian CHEN. Electrochemical performance of chemical prelithiated Li x (Mg, Ni, Zn, Cu, Co) 1-x O high-entropy oxide as anode material for lithium ion battery [J]. Energy Storage Science and Technology, 2023, 12(3): 743-753. |
[6] | Deliu ZHANG, Yan ZHANG, Hai WANG, Jiadong WANG, Xuanwen GAO, Chaomeng LIU, Dongrun YANG, Wenbin LUO. Optimization of high nickel cathode materials for lithium ion batteries by magnesium doped heterogeneous aluminum oxide coating [J]. Energy Storage Science and Technology, 2023, 12(2): 339-348. |
[7] | Jiukang TENG, Ningning WU, Chang WANG, Qingjie WANG, Bin SHI. Preparation and electrochemical performance of high capacity chromium oxide Cr8O21 cathode materials for lithium primary batteries [J]. Energy Storage Science and Technology, 2022, 11(11): 3455-3462. |
[8] | Lu WANG, Feng WANG, Jing XU, Yanpeng ZHAO, Wei LI, Yanyan WANG, Yingbiao WANG. Sorting of retired lithium-ion batteries based on SOM+SVM [J]. Energy Storage Science and Technology, 2022, 11(11): 3623-3630. |
[9] | ZHANG Yan, WANG Hai, LIU Zhaomeng, ZHANG Deliu, WANG Jiadong, LI Jianzhong, GAO Xuanwen, LUO Wenbin. Research progress of nickel-rich ternary cathode material ncm for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1693-1705. |
[10] | Haiyan HU, Shulei CHOU, Yao XIAO. Layered oxide cathode materials based on molecular orbital hybridization for high voltage sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1093-1102. |
[11] | Tiezhu GUO, Di ZHOU, Chuanfang ZHANG. Strategies for improving MXene colloidal stability and impact on their supercapacitor performance [J]. Energy Storage Science and Technology, 2022, 11(4): 1165-1174. |
[12] | Bowen CHEN, Ruiguang CUI, Yanbin SHEN, Liwei CHEN. Application of a novel method for characterization of local Young’s modulus in lithium (ion) batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 991-999. |
[13] | Kejun CHEN, Lijun FAN. Controllable synthesis of Co2+ Doped FeS2 and Their Sodium storage performances [J]. Energy Storage Science and Technology, 2023, (): 1-8. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||