Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (9): 2811-2822.doi: 10.19799/j.cnki.2095-4239.2023.0271
• Energy Storage Materials and Devices • Previous Articles Next Articles
Xupeng YAN1(), Qichen LU1, Zhibo REN1(), Jinyi WANG1, Xiaolong Wang1, Liping LIU1, Wei WANG1, Weiqi GUO1, Peng LIU1, Fangjia LI1,2
Received:
2023-04-25
Revised:
2023-05-25
Online:
2023-09-05
Published:
2023-09-16
Contact:
Zhibo REN
E-mail:xp_yan@qny.chng.com.cn;zb_ren@qny.chng.com.cn
CLC Number:
Xupeng YAN, Qichen LU, Zhibo REN, Jinyi WANG, Xiaolong Wang, Liping LIU, Wei WANG, Weiqi GUO, Peng LIU, Fangjia LI. Progress in developing commercial anion exchange membranes for hydrogen production by water electrolysis[J]. Energy Storage Science and Technology, 2023, 12(9): 2811-2822.
Table 1
Comparison for properties of typical commercial AEMs"
公司 | 产品 | 厚度/μm | 离子交换 容量/meq/g (毫当量每克) | 离子传导率/ (ms/cm) | 面电阻/ (Ω·cm2) | 拉伸 应力/MPa | 断裂 伸长率/% | 吸水率 (25 ℃)/% (质量百分数) |
---|---|---|---|---|---|---|---|---|
FuMa-Tech | Fumasep FAA3-50 | 45~55[ | 1.6-2.0 | 40 | 0.6~1.5 (Cl) | 25~40 | 15~60 | 10~25 |
Fumasep FAA3-PE-30 | 26~34 | 1.4-1.6 | — | <1.3 (Cl) | >50 | >50 | <20 | |
Fumasep FAA3-PK-75 | 70~80 | 1.2~1.4 | — | 1.2~2.0 (Cl) | 30~60 | 10~30 | 10~20 | |
Dioxide Materials | Sustainion X37-50 | 50 | 1.1 | 80 | 0.045 | 干燥时极易碎 | 干燥时极易碎 | 80[ |
Versogen | PiperION-20 | 20 | ~2.35 | ~150 | — | 30 | >50 | <75[ |
PiperION-80 | 80 | ~2.35 | ~150 | — | 50 | >100 | — | |
Ionomer (Aemion™) | AF1-HNN5-25 | 30.5±0.5[ | 1.4-1.7 | 15~25 | 0.21-0.33 | 60 | 85~110 | 31[ |
AF1-HNN5-50 | 57.5±2.0[ | 1.4-1.7 | 15~25 | 0.42-0.67 | 60 | 85~110 | 21[ | |
AF1-HNN8-25 | 29.5±0.5[ | 2.1-2.5 | >80 | 0.13 | 60 | 85~110 | 52[ | |
AF1-HNN8-50 | 59.3±0.5[ | 2.1-2.5 | >80 | 0.063 | 60 | 85~110 | 48[ | |
Orion | TM1 | 30 | 2.19 | 60 (54[ | — | 30 | 35 | 14(Cl-)/44(OH-) |
Tokuyama | A201 | 28 (35[ | 1.8 | 42 | — | 96.4±8.9 | 61.7±11.8 | 10 (50 ℃) 14 (80 ℃)[ |
1 | IEA. Global Energy Review: CO2 Emissions in 2021, IEA[R]. Paris: IEA, 2022. |
2 | 宁翔. 我国工业制氢技术路线研究及展望[J]. 能源研究与利用, 2020(1): 52-55. |
NING X. Research and prospect of China's industrial hydrogen production technology route[J]. Energy Research & Utilization, 2020(1): 52-55. | |
3 | 俞红梅, 邵志刚, 侯明, 等. 电解水制氢技术研究进展与发展建议[J]. 中国工程科学, 2021, 23(2): 146-152. |
YU H M, SHAO Z G, HOU M, et al. Hydrogen production by water electrolysis: Progress and suggestions[J]. Strategic Study of CAE, 2021, 23(2): 146-152. | |
4 | HERMESMANN M, MÜLLER T E. Green, turquoise, blue, or grey? environmentally friendly hydrogen production in transforming energy systems[J]. Progress in Energy and Combustion Science, 2022, 90: 100996. |
5 | LI C Q, BAEK J B. The promise of hydrogen production from alkaline anion exchange membrane electrolyzers[J]. Nano Energy, 2021, 87: 106162. |
6 | KRESSMAN T R E. Ion exchange resin membranes and resin-impregnated filter paper[J]. Nature, 1950, 165(4197): 568. |
7 | MERLE G, WESSLING M, NIJMEIJER K. Anion exchange membranes for alkaline fuel cells: A review[J]. Journal of Membrane Science, 2011, 377(1/2): 1-35. |
8 | GANCI F, LOMBARDO S, SUNSERI C, et al. Nanostructured electrodes for hydrogen production in alkaline electrolyzer[J]. Renewable Energy, 2018, 123: 117-124. |
9 | SANTORO C, LAVACCHI A, MUSTARELLI P, et al. What is next in anion-exchange membrane water electrolyzers? bottlenecks, benefits, and future[J]. ChemSusChem, 2022, 15(8): e202200027. |
10 | HUANG J Q, YU Z X, TANG J L, et al. A review on anion exchange membranes for fuel cells: Anion-exchange polyelectrolytes and synthesis strategies[J]. International Journal of Hydrogen Energy, 2022, 47(65): 27800-27820. |
11 | SCHULZE M, GÜLZOW E. Fuel cells-alkaline fuel cells | overview performance and operational conditions[M]//Encyclopedia of Electrochemical Power Sources. Amsterdam: Elsevier, 2009: 353-361. |
12 | RAZMJOOEI F, MORAWIETZ T, TAGHIZADEH E, et al. Increasing the performance of an anion-exchange membrane electrolyzer operating in pure water with a nickel-based microporous layer[J]. Joule, 2021, 5(7): 1776-1799. |
13 | HENKENSMEIER D, NAJIBAH M, HARMS C, et al. Overview: State-of-the art commercial membranes for anion exchange membrane water electrolysis[J]. Journal of Electrochemical Energy Conversion and Storage, 2021, 18(2): 024001. |
14 | SALVATORE D A, GABARDO C M, REYES A, et al. Designing anion exchange membranes for CO2 electrolysers[J]. Nature Energy, 2021, 6(4): 339-348. |
15 | WANG J H, ZHAO Y, SETZLER B P, et al. Poly(aryl piperidinium) membranes and ionomers for hydroxide exchange membrane fuel cells[J]. Nature Energy, 2019, 4(5): 392-398. |
16 | GANGRADE A S, CASSEGRAIN S, CHANDRA GHOSH P, et al. Permselectivity of ionene-based, Aemion® anion exchange membranes[J]. Journal of Membrane Science, 2022, 641: 119917. |
17 | PARK E J, CAPUANO C B, AYERS K E, et al. Chemically durable polymer electrolytes for solid-state alkaline water electrolysis[J]. Journal of Power Sources, 2018, 375: 367-372. |
18 | MARINKAS A, STRUŹYŃSKA-PIRON I, LEE Y, et al. Anion-conductive membranes based on 2-mesityl-benzimidazolium functionalised poly(2, 6-dimethyl-1, 4-phenylene oxide) and their use in alkaline water electrolysis[J]. Polymer, 2018, 145: 242-251. |
19 | DUAN Q J, GE S H, WANG C Y. Water uptake, ionic conductivity and swelling properties of anion-exchange membrane[J]. Journal of Power Sources, 2013, 243: 773-778. |
20 | CHAE J E, LEE S Y, YOO S J, et al. Polystyrene-based hydroxide-ion-conducting ionomer: Binder characteristics and performance in anion-exchange membrane fuel cells[J]. Polymers, 2021, 13(5): 690. |
21 | VINCENT I, KRUGER A, BESSARABOV D. Development of efficient membrane electrode assembly for low cost hydrogen production by anion exchange membrane electrolysis[J]. International Journal of Hydrogen Energy, 2017, 42(16): 10752-10761. |
22 | CARBONE A, ZIGNANI S C, GATTO I, et al. Assessment of the FAA3-50 polymer electrolyte in combination with a NiMn2O4 anode catalyst for anion exchange membrane water electrolysis[J]. International Journal of Hydrogen Energy, 2020, 45(16): 9285-9292. |
23 | KUTZ R B, CHEN Q M, YANG H Z, et al. Sustainion imidazolium-functionalized polymers for carbon dioxide electrolysis[J]. Energy Technology, 2017, 5(6): 929-936. |
24 | MOTEALLEH B, LIU Z C, MASEL R I, et al. Next-generation anion exchange membrane water electrolyzers operating for commercially relevant lifetimes[J]. International Journal of Hydrogen Energy, 2021, 46(5): 3379-3386. |
25 | LIU Z C, SAJJAD S D, GAO Y, et al. The effect of membrane on an alkaline water electrolyzer[J]. International Journal of Hydrogen Energy, 2017, 42(50): 29661-29665. |
26 | HUGAR K M, KOSTALIK H A Ⅳ, COATES G W. Imidazolium cations with exceptional alkaline stability: A systematic study of structure-stability relationships[J]. Journal of the American Chemical Society, 2015, 137(27): 8730-8737. |
27 | LINDQUIST G A, OENER S Z, KRIVINA R, et al. Performance and durability of pure-water-fed anion exchange membrane electrolyzers using baseline materials and operation[J]. ACS Applied Materials & Interfaces, 2021, 13(44): 51917-51924. |
28 | WRIGHT A G, HOLDCROFT S. Hydroxide-stable ionenes[J]. ACS Macro Letters, 2014, 3(5): 444-447. |
29 | WRIGHT A G, FAN J T, BRITTON B, et al. Hexamethyl-p-terphenyl poly(benzimidazolium): A universal hydroxide-conducting polymer for energy conversion devices[J]. Energy & Environmental Science, 2016, 9(6): 2130-2142. |
30 | THOMAS O D, SOO K J W Y, PECKHAM T J, et al. Anion conducting poly(dialkyl benzimidazolium) salts[J]. Polymer Chemistry, 2011, 2(8): 1641-1643. |
31 | THOMAS O D, SOO K J W Y, PECKHAM T J, et al. A stable hydroxide-conducting polymer[J]. Journal of the American Chemical Society, 2012, 134(26): 10753-10756. |
32 | HENKENSMEIER D, CHO H R, KIM H J, et al. Polybenzimidazolium hydroxides-Structure, stability and degradation[J]. Polymer Degradation and Stability, 2012, 97(3): 264-272. |
33 | LEE W H, PARK E J, HAN J, et al. Poly(terphenylene) anion exchange membranes: The effect of backbone structure on morphology and membrane property[J]. ACS Macro Letters, 2017, 6(5): 566-570. |
34 | KANG S Y, PARK J E, JANG G Y, et al. High-performance and durable water electrolysis using a highly conductive and stable anion-exchange membrane[J]. International Journal of Hydrogen Energy, 2022, 47(15): 9115-9126. |
35 | JANNASCH P, WEIBER E A. Configuring anion-exchange membranes for high conductivity and alkaline stability by using cationic polymers with tailored side chains[J]. Macromolecular Chemistry and Physics, 2016, 217(10): 1108-1118. |
36 | MEEK K M, ANTUNES C M, STRASSER D, et al. High-throughput anion exchange membrane characterization at NREL[J]. ECS Transactions, 2019, 92(8): 723-731. |
37 | Ionomr. Datasheet[EB/OL]. [2022-11-01]. https://ionomr.com/. |
38 | YANG Y X, LI P, ZHENG X B, et al. Anion-exchange membrane water electrolyzers and fuel cells[J]. Chemical Society Reviews, 2022, 51(23): 9620-9693. |
39 | PUSHKAREVA I V, PUSHKAREV A S, GRIGORIEV S A, et al. Comparative study of anion exchange membranes for low-cost water electrolysis[J]. International Journal of Hydrogen Energy, 2020, 45(49): 26070-26079. |
40 | HNÁT J, PLEVOVA M, TUFA R A, et al. Development and testing of a novel catalyst-coated membrane with platinum-free catalysts for alkaline water electrolysis[J]. International Journal of Hydrogen Energy, 2019, 44(33): 17493-17504. |
41 | PARK J E, KANG S Y, OH S H, et al. High-performance anion-exchange membrane water electrolysis[J]. Electrochimica Acta, 2019, 295: 99-106. |
42 | GUO D D, YU H M, CHI J, et al. Cu2S@NiFe layered double hydroxides nanosheets hollow nanorod arrays self-supported oxygen evolution reaction electrode for efficient anion exchange membrane water electrolyzer[J]. International Journal of Hydrogen Energy, 2023, 48(47): 17743-17757. |
43 | KHALID H, NAJIBAH M, PARK H S, et al. Properties of anion exchange membranes with a focus on water electrolysis[J]. Membranes, 2022, 12(10): 989. |
44 | FORTIN P, KHOZA T, CAO X Z, et al. High-performance alkaline water electrolysis using Aemion™ anion exchange membranes[J]. Journal of Power Sources, 2020, 451: 227814. |
45 | MOTZ A R, LI D G, KEANE A, et al. Performance and durability of anion exchange membrane water electrolyzers using down-selected polymer electrolytes[J]. Journal of Materials Chemistry A, 2021, 9(39): 22670-22683. |
46 | PARK S H, LEE S H, JEONG J Y, et al. Three-dimensional copper cobalt hydroxide electrode for anion exchange membrane water electrolyzer[J]. International Journal of Hydrogen Energy, 2023 |
47 | PARK Y S, JEONG J, NOH Y, et al. Commercial anion exchange membrane water electrolyzer stack through non-precious metal electrocatalysts[J]. Applied Catalysis B: Environmental, 2021, 292: 120170. |
48 | JANG M J, YANG S H, PARK M G, et al. Efficient and durable anion exchange membrane water electrolysis for a commercially available electrolyzer stack using alkaline electrolyte[J]. ACS Energy Letters, 2022, 7(8): 2576-2583. |
49 | CHEN N J, PAEK S Y, LEE J Y, et al. High-performance anion exchange membrane water electrolyzers with a current density of 7.68 A·cm-2 and a durability of 1000 hours[J]. Energy & Environmental Science, 2021, 14(12): 6338-6348. |
50 | GATTO I, CAPRÌ A, LO VECCHIO C, et al. Optimal operating conditions evaluation of an anion-exchange-membrane electrolyzer based on FUMASEP® FAA3-50 membrane[J]. International Journal of Hydrogen Energy, 2023, 48(32): 11914-11921. |
51 | CAMPAGNA ZIGNANI S, FARO M L, CARBONE A, et al. Performance and stability of a critical raw materials-free anion exchange membrane electrolysis cell[J]. Electrochimica Acta, 2022, 413: 140078. |
52 | LUO X Y, ROJAS-CARBONELL S, YAN Y S, et al. Structure-transport relationships of poly(aryl piperidinium) anion-exchange membranes: Eeffect of anions and hydration[J]. Journal of Membrane Science, 2020, 598: 117680. |
53 | ENDRŐDI B, KECSENOVITY E, SAMU A, et al. High carbonate ion conductance of a robust PiperION membrane allows industrial current density and conversion in a zero-gap carbon dioxide electrolyzer cell[J]. Energy & Environmental Science, 2020, 13(11): 4098-4105. |
54 | BAI H J, PENG H Q, XIANG Y, et al. Poly(arylene piperidine)s with phosphoric acid doping as high temperature polymer electrolyte membrane for durable, high-performance fuel cells[J]. Journal of Power Sources, 2019, 443: 227219. |
55 | YIN Z L, PENG H Q, WEI X, et al. An alkaline polymer electrolyte CO2 electrolyzer operated with pure water[J]. Energy & Environmental Science, 2019, 12(8): 2455-2462. |
56 | CHEN N J, LU C R, LI Y X, et al. Tunable multi-cations-crosslinked poly(arylene piperidinium)-based alkaline membranes with high ion conductivity and durability[J]. Journal of Membrane Science, 2019, 588: 117120. |
57 | LONG C, WANG Z H, ZHU H. High chemical stability anion exchange membrane based on poly(aryl piperidinium): Effect of monomer configuration on membrane properties[J]. International Journal of Hydrogen Energy, 2021, 46(35): 18524-18533. |
58 | MA W L, LIU Q, LI J M, et al. Poly (aryl piperidinium) membranes with dipolar alkyl nitrile sidechains for fuel cells[J]. International Journal of Hydrogen Energy, 2023, 48(40): 15258-15268. |
59 | SONG W J, PENG K, XU W, et al. Upscaled production of an ultramicroporous anion-exchange membrane enables long-term operation in electrochemical energy devices[J]. Nature Communications, 2023, 14: 2732. |
60 | ENAPTER. Enapter Datasheet[EB/OL]. [2022-11-01]. https://www.enapter.com/aem-electrolyser. |
[1] | Haisheng CHEN, Hong LI, Yujie XU, Man CHEN, Liang WANG, Xingjian DAI, Dehou XU, Xisheng TANG, Xianfeng LI, Yongsheng HU, Yanwei MA, Yu LIU, Wei SU, Qingsong WANG, Jun CHEN, Ping ZHUO, Liye XIAO, Xuezhi ZHOU, Ziping FENG, Kai JIANG, Haijun YU, Yongbing TANG, Renjie CHEN, Yatao LIU, Yuxin ZHANG, Xipeng LIN, Huan GUO, Han ZHANG, Changkun ZHANG, Dongxu HU, Xiaohui RONG, Xiong ZHANG, Kaiqiang JIN, Lihua JIANG, Yumin PENG, Shiqi LIU, Yilin ZHU, Xing WANG, Xin ZHOU, Xuewu OU, Quanquan PANG, Zhenhua YU, Wei LIU, Fen YUE, Zhen LI, Zhen SONG, Zhifeng WANG, Wenji SONG, Haibo LIN, Jiecai LI, Bin YI, Fujun LI, Xinhui PAN, Li LI, Yiming MA, Huang LI. Research progress on energy storage technologies of China in 2022 [J]. Energy Storage Science and Technology, 2023, 12(5): 1516-1552. |
[2] | Jin XU, Xian DING, Yongli GONG, Guangli HE, Ting HU. Economic analysis of hydrogen production plant with water electrolysis [J]. Energy Storage Science and Technology, 2022, 11(7): 2374-2385. |
[3] | WANG Peican, WAN Lei, XU Ziang, XU Qin, PANG Maobin, CHEN Jinxun, WANG Baoguo. Interface engineering of self-supported electrode for electrochemical water splitting [J]. Energy Storage Science and Technology, 2022, 11(6): 1934-1946. |
[4] | Nan LIN, Ulrike KREWER, Jochen ZAUSCH, Konrad STEINER, Haibo LIN, Shouhua FENG. Development and application of multiphysics models for electrochemical energy storage and conversion systems [J]. Energy Storage Science and Technology, 2022, 11(4): 1149-1164. |
[5] | Haisheng CHEN, Hong LI, Wentao MA, Yujie XU, Zhifeng WANG, Man CHEN, Dongxu HU, Xianfeng LI, Xisheng TANG, Yongsheng HU, Yanwei MA, Kai JIANG, Hao QIAN, Qingsong WANG, Liang WANG, Xinjing ZHANG, Xing WANG, Dehou XU, Xuezhi ZHOU, Wei LIU, Xianzhang WU, Donglin WANG, Qinggang HE, Zifeng MA, Yaxiang LU, Xuesong ZHANG, Quan LI, Liumin SUO, Huan GUO, Zhenhua YU, Wenxin MEI, Peng QIN. Research progress of energy storage technology in China in 2021 [J]. Energy Storage Science and Technology, 2022, 11(3): 1052-1076. |
[6] | Yubo QI, Da GAO, Xianling ZHENG. Economic analysis of SPE hydrogen production technology in China [J]. Energy Storage Science and Technology, 2022, 11(12): 4038-4047. |
[7] | Bin XU, Rui WANG, Wei SU, Guangli HE, Ping MIAO. Research progress and prospect of key materials of proton exchange membrane water electrolysis [J]. Energy Storage Science and Technology, 2022, 11(11): 3510-3520. |
[8] | Xian DING, Tao FENG, Guangli HE, Ting HU, Yanjiang LIU. Research progress of the influence of wind power and photovoltaic of power fluctuation on water electrolyzer for hydrogen production [J]. Energy Storage Science and Technology, 2022, 11(10): 3275-3284. |
[9] | Zixuan WANG, Juncheng LI, Jindong LI, Juan YI, Lin SHI, Xu WU. Resource recovery technology of spent lithium iron phosphate cathode material [J]. Energy Storage Science and Technology, 2022, 11(1): 45-52. |
[10] | Jiahao YANG, Zhaoping SHI, Yibo WANG, Junjie GE, Changpeng LIU, Wei XING. In-situ/operando characterization techniques for oxygen evolution in acidic media [J]. Energy Storage Science and Technology, 2021, 10(6): 1877-1890. |
[11] | Liping CHEN, Jinkui FENG, Yuan TIAN, Yongling AN, Guangjun DONG. Knowledge mapping analysis of lithium secondary batteries research based on bibliometrics [J]. Energy Storage Science and Technology, 2021, 10(3): 1196-1205. |
[12] | Yingying HU, Xiangwei WU, Zhaoyin WEN. Progress and prospect of engineering research on energy storage sodium sulfur battery—Material and structure design for improving battery safety [J]. Energy Storage Science and Technology, 2021, 10(3): 781-799. |
[13] | Peng ZHANG, Xingqiang LAI, Junrong SHEN, Donghai ZHANG, Yongheng YAN, Rui ZHANG, Jun SHENG, Kangwei DAI. Research and industrialization progress of solid-state lithium battery [J]. Energy Storage Science and Technology, 2021, 10(3): 896-904. |
[14] | Li WANG, Jianhong LIU, Xiangming HE. Research progress on the practical applications of red phosphorus composite anodes [J]. Energy Storage Science and Technology, 2021, 10(2): 425-431. |
[15] | Xi CHEN, Qian LIU, Jianghai XU, Shichun LONG, Zhongmin WAN. A combined heat power and hydrogen production system based on solar energy and Rankine cycle [J]. Energy Storage Science and Technology, 2021, 10(2): 611-616. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||