Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (10): 3642-3652.doi: 10.19799/j.cnki.2095-4239.2024.0274
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Shengxian HUANG(), Huisheng XU, Qipeng WANG, Lu SONG, Linshuang ZHAO()
Received:
2024-03-29
Revised:
2024-04-21
Online:
2024-10-28
Published:
2024-10-30
Contact:
Linshuang ZHAO
E-mail:3220210191@bit.edu.cn;zhaolinshuang@bit.edu.cn
CLC Number:
Shengxian HUANG, Huisheng XU, Qipeng WANG, Lu SONG, Linshuang ZHAO. Study on the response characteristics of cylindrical power lithium-ion batteries under impact load[J]. Energy Storage Science and Technology, 2024, 13(10): 3642-3652.
Table 2
Plane impact experiment of 0% SOC batteries"
高度/cm | 应变ε | 最大冲击荷载/N | 冲击应力/MPa | 质量变化/g | 电压变化/V | 最大温升/℃ | |
---|---|---|---|---|---|---|---|
35 | 3.03 | -0.144 | 2191.86 | 2.88 | 0.00 | 0.00 | 0.00 |
70 | 3.36 | -0.160 | 5049.00 | 6.33 | -0.02 | -0.01 | 0.00 |
105 | 4.01 | -0.191 | 7249.00 | 8.39 | -0.03 | -0.03 | 0.00 |
140 | 4.08 | -0.194 | 9821.73 | 11.28 | -0.02 | 0.02 | 0.00 |
175 | 4.32 | -0.206 | 12049.00 | 13.49 | -0.91 | -1.67 | 28.63 |
200 | 5.89 | -0.280 | 13947.37 | 13.66 | -0.95 | -2.70 | 59.08 |
Table 3
Plane impact experiment of different SOC batteries"
高度/cm | SOC/% | 应变ε | 冲击应力/MPa | 电压变化/V | 最大温升/℃ | |
---|---|---|---|---|---|---|
35 | 25 | 1.95 | -0.093 | 3.54 | 0.00 | 0.00 |
50 | 1.88 | -0.090 | 3.61 | 0.00 | 0.00 | |
75 | 1.80 | -0.086 | 3.68 | 0.00 | 0.00 | |
100 | 1.72 | -0.082 | 3.76 | 0.00 | 0.00 | |
70 | 25 | 2.68 | -0.128 | 7.03 | -0.02 | 0.00 |
50 | 2.82 | -0.134 | 6.86 | 0.00 | 0.00 | |
75 | 2.73 | -0.130 | 6.97 | -0.01 | 0.00 | |
100 | 2.70 | -0.129 | 7.00 | 0.00 | 0.00 | |
105 | 25 | 3.21 | -0.153 | 9.28 | 0.04 | 0.00 |
50 | 3.11 | -0.148 | 9.42 | 0.00 | 0.00 | |
75 | 3.05 | -0.145 | 9.50 | 0.02 | 0.00 | |
100 | 3.15 | -0.150 | 9.36 | 0.00 | 0.00 | |
140 | 25 | 3.20 | -0.152 | 12.59 | 0.01 | 0.00 |
50 | 3.25 | -0.155 | 12.50 | 0.00 | 0.00 | |
75 | 3.36 | -0.160 | 12.31 | -0.02 | 0.00 | |
100 | 3.41 | -0.162 | 12.23 | 0.00 | 0.00 | |
175 | 25 | 4.12 | -0.196 | 13.78 | 0.02 | 0.00 |
50 | 4.15 | -0.198 | 13.73 | 0.00 | 0.00 | |
75 | 4.06 | -0.193 | 13.87 | -0.02 | 0.00 | |
100 | 4.10 | -0.195 | 13.81 | 0.00 | 0.00 | |
200 | 25 | 5.18 | -0.247 | 14.43 | -3.75 | 59.20 |
50 | 5.23 | -0.249 | 14.37 | -3.8 | 72.60 | |
75 | 4.75 | -0.226 | 14.98 | -3.97 | 193.0 | |
100 | 4.80 | -0.229 | 14.91 | -4.2 | 238.80 |
Table 4
Cylindrical impact experiment of 0% SOC batteries"
高度/cm | 应变ε | 最大冲击载荷/N | 冲击应力/MPa | 质量变化/g | 电压变化/V | 最大温升/℃ | |
---|---|---|---|---|---|---|---|
35 | 3.98 | -0.190 | 3799.00 | 18.97 | 0.00 | 0.00 | 0.00 |
70 | 5.10 | -0.243 | 6353.35 | 26.61 | -0.01 | 0.00 | 0.00 |
105 | 6.16 | -0.293 | 7875.09 | 29.40 | -0.01 | 0.00 | 0.00 |
140 | 6.76 | -0.322 | 9197.94 | 32.71 | -0.03 | 0.00 | 0.00 |
175 | 6.93 | -0.330 | 10300.43 | 36.20 | -0.955 | -2.70 | 62.80 |
200 | 7.76 | -0.370 | 11471.86 | 38.44 | -1.05 | -2.70 | 69.65 |
Table 5
Cylindrical impact experiment of different SOC batteries"
高度/cm | SOC/% | 应变ε | 冲击应力/MPa | 电压变化/V | 最大温升/℃ | |
---|---|---|---|---|---|---|
35 | 25 | 3.51 | -0.167 | 20.89 | 0.00 | 0.00 |
50 | 3.48 | -0.166 | 21.03 | 0.00 | 0.00 | |
75 | 3.62 | -0.172 | 20.39 | 0.00 | 0.00 | |
100 | 3.54 | -0.169 | 20.75 | 0.00 | 0.00 | |
70 | 25 | 4.70 | -0.224 | 28.12 | 0.00 | 0.00 |
50 | 4.63 | -0.220 | 28.42 | 0.00 | 0.00 | |
75 | 4.41 | -0.210 | 29.41 | 0.00 | 0.00 | |
100 | 4.20 | -0.200 | 30.48 | 0.00 | 0.00 | |
105 | 25 | 5.95 | -0.283 | 29.98 | 0.00 | 0.00 |
50 | 5.73 | -0.273 | 30.66 | 0.00 | 0.00 | |
75 | 5.21 | -0.248 | 32.53 | 0.00 | 0.00 | |
100 | 4.71 | -0.224 | 34.81 | 0.00 | 0.00 | |
140 | 25 | 5.91 | -0.281 | 35.16 | -3.75 | 463.00 |
50 | 6.42 | -0.306 | 33.58 | -3.82 | 614.20 | |
75 | 5.54 | -0.264 | 36.55 | -3.97 | 647.70 | |
100 | 5.32 | -0.253 | 37.49 | -4.20 | 722.10 | |
175 | 25 | 6.23 | -0.297 | 38.22 | -3.75 | 564.30 |
50 | 6.56 | -0.312 | 37.19 | -3.82 | 638.20 | |
75 | 5.64 | -0.269 | 40.48 | -3.97 | 645.60 | |
100 | 5.62 | -0.268 | 40.57 | -4.20 | 596.40 | |
200 | 25 | 7.21 | -0.343 | 39.60 | -3.75 | 630.50 |
50 | 7.35 | -0.350 | 39.27 | -3.82 | 582.20 | |
75 | 6.83 | -0.325 | 40.59 | -3.97 | 712.50 | |
100 | 6.78 | -0.323 | 40.74 | -4.20 | 732.40 |
12 | 张晓婷. 圆柱型锂离子电池单体在径向挤压载荷下的力学响应特性研究[D]. 长春: 吉林大学, 2019. |
ZHANG X T. Study on mechanical response characteristics of cylindrical lithium ion battery monomer under radial extrusion load[D]. Changchun: Jilin University, 2019. | |
13 | LIU X, REN D S, HSU H, et al. Thermal runaway of lithium-ion batteries without internal short circuit[J]. Joule, 2018, 2(10): 2047-2064. DOI: 10.1016/j.joule.2018.06.015. |
14 | 许辉勇, 范亚飞, 张志萍, 等. 针刺和挤压作用下动力电池热失控特性与机理综述[J]. 储能科学与技术, 2020, 9(4): 1113-1126. DOI: 10.19799/j.cnki.2095-4239.2020.0028. |
XU H Y, FAN Y F, ZHANG Z P, et al. Thermal runaway characteristics and mechanisms of Li-ion batteries for electric vehicles under nail penetration and crush[J]. Energy Storage Science and Technology, 2020, 9(4): 1113-1126. DOI: 10.19799/j.cnki.2095-4239.2020.0028. | |
1 | SCROSATI B, GARCHE J. Lithium batteries: Status, prospects and future[J]. Journal of Power Sources, 2010, 195(9): 2419-2430. DOI: 10.1016/j.jpowsour.2009.11.048. |
2 | 杜光超, 郑莉莉, 张志超, 等. 锂离子电池热安全性研究进展[J]. 储能科学与技术, 2019, 8(3): 500-505. DOI: 10.12028/j.issn.2095-4239.2019.0028. |
DU G C, ZHENG L L, ZHANG Z C, et al. Overview of research on thermal safety of lithium-ion batteries[J]. Energy Storage Science and Technology, 2019, 8(3): 500-505. DOI: 10.12028/j.issn.2095-4239.2019.0028. | |
3 | 兰凤崇, 刘金, 陈吉清, 等. 电动汽车电池包箱体及内部结构碰撞变形与响应分析[J]. 华南理工大学学报(自然科学版), 2017, 45(2): 1-8. DOI: 10.3969/j.issn.1000-565X.2017.02.001. |
LAN F C, LIU J, CHEN J Q, et al. Deformation and response analysis of pack and internal structure of electrical vehicle battery in collision[J]. Journal of South China University of Technology (Natural Science Edition), 2017, 45(2): 1-8. DOI: 10.3969/j.issn.1000-565X.2017.02.001. | |
4 | MEIER, JOSEPH D. Material characterization of high-voltage lithium-ion battery models for crashworthiness analysis[D]. Massachusetts Institute of Technology, 2013. |
5 | 范文杰, 薛鹏程, 王根伟, 等. 压缩载荷作用下锂离子电池的安全性能[J]. 高压物理学报, 2019, 33(6): 182-188. DOI: 10.11858/gywlxb.20190752. |
FAN W J, XUE P C, WANG G W, et al. Safety performance of power lithium ion battery under compressive load[J]. Chinese Journal of High Pressure Physics, 2019, 33(6): 182-188. DOI: 10.11858/gywlxb.20190752. | |
6 | 汤元会, 袁博兴, 李杰, 等. 圆柱形锂离子电池在针刺条件下的安全性研究[J]. 储能科学与技术, 2024, 13(4): 1326-1334. DOI: 10.19799/j.cnki.2095-4239.2023.0654. |
TANG Y H, YUAN B X, LI J, et al. Study on the safety of cylindrical lithium-ion batteries under nail penetration conditions[J]. Energy Storage Science and Technology, 2024, 13(4): 1326-1334. DOI: 10.19799/j.cnki.2095-4239.2023.0654. | |
7 | ZHANG X W, SAHRAEI E, WANG K. Deformation and failure characteristics of four types of lithium-ion battery separators[J]. Journal of Power Sources, 2016, 327: 693-701. DOI: 10.1016/j.jpowsour.2016.07.078. |
8 | 许骏, 王璐冰, 刘冰河. 锂离子电池机械完整性研究现状和展望[J]. 汽车安全与节能学报, 2017, 8(1): 15-29. |
XU J, WANG L B, LIU B H. Review for mechanical integrity of lithium-ion battery[J]. Journal of Automotive Safety and Energy, 2017, 8(1): 15-29. | |
9 | XU J, LIU B H, HU D Y. State of charge dependent mechanical integrity behavior of 18650 lithium-ion batteries[J]. Scientific Reports, 2016, 6: 21829. DOI: 10.1038/srep21829. |
10 | XU J, LIU B H, WANG L B, et al. Dynamic mechanical integrity of cylindrical lithium-ion battery cell upon crushing[J]. Engineering Failure Analysis, 2015, 53: 97-110. DOI: 10.1016/j.engfailanal. 2015.03.025. |
11 | ZHU J E, WIERZBICKI T, LI W. A review of safety-focused mechanical modeling of commercial lithium-ion batteries[J]. Journal of Power Sources, 2018, 378: 153-168. DOI: 10.1016/j.jpowsour.2017.12.034. |
[1] | Zhonglin SUN, Jiabo LI, Di TIAN, Zhixuan WANG, Xiaojing XING. Useful life prediction for lithium-ion batteries based on COA-LSTM and VMD [J]. Energy Storage Science and Technology, 2024, 13(9): 3254-3265. |
[2] | Jizhong LU, Simin PENG, Xiaoyu LI. State-of-health estimation of lithium-ion batteries based on multifeature analysis and LSTM-XGBoost model [J]. Energy Storage Science and Technology, 2024, 13(9): 2972-2982. |
[3] | Xuefeng HU, Xianlei CHANG, Xiaoxiao LIU, Wei XU, Wenbin ZHANG. SOC estimation of lithium-ion batteries under multiple temperatures conditions based on MIARUKF algorithm [J]. Energy Storage Science and Technology, 2024, 13(9): 2983-2994. |
[4] | Siyuan SHEN, Yakun LIU, Donghuang LUO, Yujun LI, Wei HAO. Transient overvoltage protection design and circuit development for energy storage lithium-ion battery modules [J]. Energy Storage Science and Technology, 2024, 13(9): 3277-3286. |
[5] | Yuan CHEN, Siyuan ZHANG, Yujing CAI, Xiaohe HUANG, Yanzhong LIU. State-of-health estimation of lithium batteries based on polynomial feature extension of the CNN-transformer model [J]. Energy Storage Science and Technology, 2024, 13(9): 2995-3005. |
[6] | Ruihe XING, Suting WENG, Yejing LI, Jiayi ZHANG, Hao ZHANG, Xuefeng WANG. AI-assisted battery material characterization and data analysis [J]. Energy Storage Science and Technology, 2024, 13(9): 2839-2863. |
[7] | Hongsheng GUAN, Cheng QIAN, Bo SUN, Yi REN. Predicting capacity degradation trajectory for lithium-ion batteries under limited data conditions [J]. Energy Storage Science and Technology, 2024, 13(9): 3084-3093. |
[8] | Xue KE, Huawei HONG, Peng ZHENG, Zhicheng LI, Peixiao FAN, Jun YANG, Yuzheng GUO, Chunguang KUAI. Estimating lithium-ion battery health using automatic feature extraction and channel attention mechanisms for multi-timescale modeling [J]. Energy Storage Science and Technology, 2024, 13(9): 3059-3071. |
[9] | Chengwen TIAN, Bingxiang SUN, Xinze ZHAO, Zhicheng FU, Shichang MA, Bo ZHAO, Xubo ZHANG. Accelerated life prediction of lithium-ion batteries using data-driven approaches [J]. Energy Storage Science and Technology, 2024, 13(9): 3103-3111. |
[10] | Qingbo LI, Maohui ZHANG, Ying LUO, Taolin LYU, Jingying XIE. Lithium-ion battery state of charge estimation based on equivalent circuit model [J]. Energy Storage Science and Technology, 2024, 13(9): 3072-3083. |
[11] | Bingxiang SUN, Xin YANG, Xingzhen ZHOU, Shichang MA, Zhihao WANG, Weige ZHANG. Comparative parametric study of metaheuristics based on impedance modeling for lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(9): 2952-2962. |
[12] | Yufeng HUANG, Huanchao LIANG, Lei XU. Kalman filter optimize Transformer method for state of health prediction on lithium-ion battery [J]. Energy Storage Science and Technology, 2024, 13(8): 2791-2802. |
[13] | Zheng CHEN, Bo YANG, Zhigang ZHAO, Jiangwei SHEN, Renxin XIAO, Xuelei XIA. State of charge estimation considering lithium battery temperature and aging [J]. Energy Storage Science and Technology, 2024, 13(8): 2813-2822. |
[14] | Lijun XU, Lihong XU, Fangyuxuan SONG. System fault monitoring and diagnostic analysis of electrochemical energy storage power stations [J]. Energy Storage Science and Technology, 2024, 13(8): 2788-2790. |
[15] | Guohe CHEN, Peizhao LYU, Menghan LI, Zhonghao RAO. Research progress on thermal runaway propagation characteristics of lithium-ion batteries and its inhibiting strategies [J]. Energy Storage Science and Technology, 2024, 13(7): 2470-2482. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||