Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (11): 4155-4176.doi: 10.19799/j.cnki.2095-4239.2024.0537
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Shouping WEI(
), Jie SUN(
), Jigang LI, Tian ZHOU, Jing CHEN, Shengnan DANG, Na TANG, Fan ZHANG
Received:2024-06-17
Revised:2024-07-11
Online:2024-11-28
Published:2024-11-27
Contact:
Jie SUN
E-mail:wsping0309341@126.com;magnsun@mail.tsinghua.edu.cn
CLC Number:
Shouping WEI, Jie SUN, Jigang LI, Tian ZHOU, Jing CHEN, Shengnan DANG, Na TANG, Fan ZHANG. Research progress on detection and analysis of thermal runaway gas products from lithium-ion batteries[J]. Energy Storage Science and Technology, 2024, 13(11): 4155-4176.
Fig.5
Schematic of a battery pack module and vent channel[49]: (a) The vent-gas can easily enter the vent channel located and is detected by the gas sensor; (b) Cross-sectional view of the vent channel, where the vent-gas enters from the left side, and the gas sensor and membrane are located on the right"
Table 1
Advantages and disadvantages of detection and analysis technologies for thermal runaway gas products"
| 技术 | 优点 | 缺点 |
|---|---|---|
| 气体传感器 | 响应速度快、灵敏度高,适合气体的实时在线监测和分析;选择性好、检测范围宽,适合特定高浓度气体产物的准确测量;成本低、操作简便,可灵活配备不同数量、不同类型传感器 | 易受环境因素影响,容易被外部因素干扰,稳定性和可靠性相对不高,不能用于低浓度气体的精确测量,多气体检测时需要配备多个传感器 |
| FTIR | 分辨率高、波数精度高、灵敏度高、扫描速度快、光谱范围宽,适合多种气体的实时在线分析 | 无法鉴别化学结构相似的物质,无红外特征基团吸收的物质不能检测,谱图比较复杂,对分析人员要求高,谱图易受环境因素影响出现波动和干扰,需要额外添加样品预处理设备,复杂样品的重叠峰多且不易分辨 |
| GC | 分离能力强、灵敏度高、选择性好、性能稳定、适用性广,适合复杂气体样品的检测分析 | 物质定性方面能力有限,定性需要标准物,不适用未知成分的检测,对复杂混合物的检测时间较长,不能实时分析 |
| GC-MS | 综合了GC和MS的优点,对复杂混合气体的分离和定性能力强,检测的物质种类最多且能同时进行检测,检测结果准确可靠;灵敏度高、检测限低,低含量锂电热失控气体产物也能准确检测;技术发展成熟,应用最广泛 | 不适合分子量小于40的气体产物的检测,分析周期相对较长,无法反映热失控瞬时状态的气体信息变化,在采样过程中会破坏和消耗气体样本,仪器价格贵 |
| 拉曼光谱 | 除单原子气体外的所有气体都能检测,检测方式非接触、无损伤,不干扰电池内部反应,可对气体进行瞬态原位测量 | 拉曼信号比较弱,检测限相对较高,技术还不够成熟,仪器价格昂贵 |
| IC | 具有一般液相色谱的所有优点,可同时准确测定多种离子 | 不能直接检测气体,应用范围小 |
| 复合气体分析仪 | 不但具备单个气体传感器的优点,还能进行多个气体的快速自动化实时检测 | 具有和气体传感器类似的缺点,比气体传感器的造价高,缺乏灵活性,需要防止气体信号之间的交叉干扰 |
| 技术组合 | 综合每种技术的优点,弥补不足,适合用于锂离子电池热失控气体产物的全面检测分析 | 与单一技术相比,操作流程上会相对繁琐,且经济成本会增加 |
Table 2
Summary of research on thermal runaway gas products from lithium-ion batteries in literature"
| 研究内容 | 技术 | 选用技术及其检测的气体 | 文献 |
|---|---|---|---|
| 产气机理分析 | GC | CO、CO2、H2、O2、C x H y | [ |
| CO、CO2、H2、CH4、C2H4、C2H6 | [ | ||
| FTIR | CO2、POF3、EC | [ | |
| GC+FTIR | CO、CO2、H2、CH4、C2H4、C2H6 | [ | |
| GC-MS | CO、CO2、O2、有机气体 | [ | |
| CO2、C3H6O2等多种有机物、电解液 | [ | ||
| CO2、POF3、CH3F、CH3OLi、CH3OCH3、DMC等 | [ | ||
| GC-MS+气体传感器 | CO、CO2、CH4、C2H6、C2H4等共25种气体(大多为有机物)以及HF | [ | |
| 气体成分和产气量 | GC | CO、CO2、H2、N2、CH4、C2H6、C3H8、C2H4、C3H6 | [ |
| CO、CO2、H2、O2、N2、CH4、C2H2、C2H4、C2H6、C3H6、C3H8、水蒸气 | [ | ||
| GC+复合气体分析仪 | CO、CO2、H2、总碳氢化合物、HF | [ | |
| 拉曼光谱+气体传感器 | H2、CO、CO2、O2 | [ | |
| GC-MS | CO、CO2以及CH4、C2H6、C2H4等有机物共25种 | [ | |
| CO、CO2以及PF3、C2H4、C2H6等有机物共25种 | [ | ||
| CO、CO2以及C2H4、C2H6、C3H6等有机物共31种 | [ | ||
| GC-MS+FTIR | CO、CO2、HF、POF3、可燃气、电解液 | [ | |
| GC-MS+气体传感器 | CO2、H2、多种有机物 | [ | |
| 燃爆危险性 | GC | N2、CO、CO2、H2、O2、C1~C4 烃类 | [ |
| CO、CO2、H2、总烃 | [ | ||
| FTIR | CO、CO2 | [ | |
| 电解液、CH4、H2、N2、CO2 | [ | ||
| 拉曼光谱 | CO2、CO、H2、CH4、C2H4、C3H6 | [ | |
| CO、CO2、H2、CH4 | [ | ||
| 复合气体分析仪 | CO、CO2、O2 | [ | |
| GC-MS | CO2、不饱和烃和电解液等共20多种物质 | [ | |
| CO、CO2、H2以及CH4等大量有机物 | [ | ||
| CO、CO2、CH4、C2H4 | [ | ||
| GC-MS+气体传感器 | CO、CO2以及多种有机物 | [ | |
| 毒害 | 气体传感器 | CO、CO2、O2、SO2、HF、HCN、CH4 | [ |
| FTIR | CO、NO、SO2、HCl、HF | [ | |
| HF、POF3、PF5 | [ | ||
| 气体传感器+FTIR | CO、CO2、HF、POF3 | [ | |
| 气体分析仪 | CO、CO2、H2、O2 | [ | |
| IC | 含氟物质、含氯物质 | [ | |
| GC-MS+气体传感器+IC | CO、CO2、PO x 、HF和100多种有机气体 | [ | |
| 监测预警 | 气体传感器 | CO2 | [ |
| CO、CO2、H2 | [ | ||
| CO、CO2、H2、CH4、C2H4、C2H6 | [ | ||
| CO、CO2、H2、HCl、HF | [ | ||
| CO、H2 | [ | ||
| CO、H2、VOC | [ | ||
| CO、H2、VOCs等 | [ | ||
| 1 | YANG M J, YE Y J, YANG A J, et al. Comparative study on aging and thermal runaway of commercial LiFePO4/graphite battery undergoing slight overcharge cycling[J]. Journal of Energy Storage, 2022, 50: 104691. DOI: 10.1016/j.est.2022.104691. |
| 2 | 刘静, 吕媛媛, 秦剑峰, 等. 锂离子电池热失控产气的研究进展[J]. 工业安全与环保, 2023, 49(12): 71-76. DOI: 10.3969/j.issn.1001-425X.2023.12.015. |
| LIU J, LÜ Y Y, QIN J F, et al. Research progress of thermal runaway gas generation in lithium ion batteries[J]. Industrial Safety and Environmental Protection, 2023, 49(12): 71-76. DOI: 10.3969/j.issn.1001-425X.2023.12.015. | |
| 3 | KONG D P, LV H P, PING P, et al. A review of early warning methods of thermal runaway of lithium ion batteries[J]. Journal of Energy Storage, 2023, 64: 107073. DOI: 10.1016/j.est. 2023. 107073. |
| 4 | 李正力, 李肖辉, 王京, 等. 锂离子电池储能电站热失控预警与防护研究进展[J]. 高压电器, 2024, 60(1): 87-99. DOI: 10.13296/j.1001-1609.hva.2024.01.011. |
| LI Z L, LI X H, WANG J, et al. Research progress on thermal runaway warning and protection of lithium-ion battery in energy storage power station[J]. High Voltage Apparatus, 2024, 60(1): 87-99. DOI: 10.13296/j.1001-1609.hva.2024.01.011. | |
| 5 | 曹志成, 管敏渊, 楼平, 等. 锂离子电池热失控早期特征及预警方法综述[J]. 电源技术, 2024, 48(5): 771-780. DOI: 10.3969/j.issn.1002-087X.2024.05.002. |
| CAO Z C, GUAN M Y, LOU P, et al. Review on early thermal runaway characteristic signal and warning method of lithium ion battery[J]. Chinese Journal of Power Sources, 2024, 48(5): 771-780. DOI: 10.3969/j.issn.1002-087X.2024.05.002. | |
| 6 | 赵春朋. 镍钴锰酸锂电池热失控及燃爆危险性研究[D]. 合肥:中国科学技术大学, 2021. |
| ZHAO C P. Study on the thermal runaway risk and deflagration of nickel cobalt lithium manganate batteries[D]. Hefei: University of Science and Technology of China, 2021. | |
| 7 | 袁帅,台枫,钱新明,等.磷酸铁锂电池热失控产物爆炸下限预测方法[J/OL].爆炸与冲击, [2024-6-23].http://kns.cnki.net/kcms/detail/51.1148.O3.20240603.1547.008.html. |
| 8 | ZHAO J C, LU S, FU Y Y, et al. Experimental study on thermal runaway behaviors of 18650 li-ion battery under enclosed and ventilated conditions[J]. Fire Safety Journal, 2021, 125: 103417. DOI: 10.1016/j.firesaf.2021.103417. |
| 9 | 国家消防救援局. 2021年全国10起典型火灾爆炸事故[EB/OL]. [2022-01-10] . https://www.119.gov.cn/xw/mtbd/tpbd/2022/25996.shtml |
| National Fire and Rescue Bureau. 10 typical fire and explosion accidents in China in 2021[EB/OL]. [2022-01-10]. https://www. 119.gov.cn/xw/mtbd/tpbd/2022/25996.shtml | |
| 10 | 国家消防救援局. 全国一季度火灾21.9万起,死亡625人![EB/OL]. [2022-04-04]. https://www.119.gov.cn/gk/sjtj/2022/28761.shtml. |
| National Fire and Rescue Bureau. 219000 fires occurred nationwide in the first quarter, resulting in 625 deaths! [EB/OL]. [2022-04-04]. https://www.119.gov.cn/gk/sjtj/2022/28761.shtml. | |
| 11 | 何雨潇. 锂离子电池内短路引发热失控过程研究[D]. 北京: 北京有色金属研究总院, 2023. DOI: 10.26970/d.cnki.gbjyy.2023.000025. |
| HE Y X. Study on thermal runaway process caused by internal short circuit in lithium ion battery[D]. Beijing: General Research Institute for Nonferrous Metals, 2023. DOI: 10.26970/d.cnki.gbjyy.2023.000025. | |
| 12 | 柯巍. 圆柱形锂离子电池热失控传递抑制机理与实验研究[D]. 北京: 中国矿业大学(北京), 2022. DOI: 10.27624/d.cnki.gzkbu. 2022. 000079. |
| 13 | 庄春吉, 黄辉, 胡敏杰, 等. 热失控数据采集实验系统设计与实验研究[J]. 实验室科学, 2022, 25(2): 14-18. |
| ZHUANG C J, HUANG H, HU M J, et al. Design and experimental study on thermal runaway data acquisition experiment system[J]. Laboratory Science, 2022, 25(2): 14-18. | |
| 14 | 孙强, 贾井运, 王海斌, 等. 常压及低压下锂电池热失控随数量变化特性[J]. 中国安全科学学报, 2022, 32(2): 145-151. DOI: 10.16265/j.cnki.issn1003-3033.2022.02.020. |
| SUN Q, JIA J Y, WANG H B, et al. Research on thermal runaway characteristics of lithium-ion batteries along with cell number changes under standard and low atmospheric pressures[J]. China Safety Science Journal, 2022, 32(2): 145-151. DOI: 10. 16265/j.cnki.issn1003-3033.2022.02.020. | |
| 15 | 李明浩. 气压和温度变化对18650锂离子电池热失控规律及产物的影响[D]. 广汉: 中国民用航空飞行学院, 2022. DOI: 10.27722/d.cnki.gzgmh.2022.000229. |
| 16 | 周彪, 王凯, 任常兴, 等. 锂离子电池热失控过程中的烟气生成规律研究[J]. 消防科学与技术, 2023, 42(7): 897-902. DOI: 10.3969/j.issn.1009-0029.2023.07.004. |
| ZHOU B, WANG K, REN C X, et al. Study on the composition and formation mechanism of smoke during thermal runaway propagation of lithium-ion batteries[J]. Fire Science and Technology, 2023, 42(7): 897-902. DOI: 10.3969/j.issn.1009-0029.2023.07.004. | |
| 17 | 张青松, 刘添添, 郝朝龙, 等. 锂离子电池热失控气体快速检测及危险性分析方法[J]. 北京航空航天大学学报, 2023, 49(9): 2227-2233. DOI: 10.13700/j.bh.1001-5965.2021.0668. |
| ZHANG Q S, LIU T T, HAO C L, et al. Rapid detection analysis method of thermal runaway gas composition and risk of lithium ion battery[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(9): 2227-2233. DOI: 10.13700/j.bh.1001-5965.2021.0668. | |
| 18 | 邹晓龙. 不同环境压力和温度下锰酸锂电池热失控特性研究[D]. 广汉: 中国民用航空飞行学院, 2022. DOI: 10.27722/d.cnki.gzgmh. 2022.000218. |
| 19 | 朱艳丽, 徐艺博, 王聪杰, 等. 不同荷电状态磷酸铁锂电池热失控温度与产气特性分析[J]. 安全与环境学报, 2024, 24(1): 143-151. DOI: 10.13637/j.issn.1009-6094.2023.0588. |
| ZHU Y L, XU Y B, WANG C J, et al. Analysis of thermal runaway temperature and gas production characteristics of lithium iron phosphate batteries with different states of charge[J]. Journal of Safety and Environment, 2024, 24(1): 143-151. DOI: 10.13637/j.issn.1009-6094.2023.0588. | |
| 20 | 张青松, 牛江昊, 赵洋. 不同正极材料锂离子电池热失控产物研究[J]. 消防科学与技术, 2023, 42(5): 598-602. DOI: 10.3969/j.issn.1009-0029.2023.05.004. |
| ZHANG Q S, NIU J H, ZHAO Y. Research on thermal runaway products of lithium-ion batteries with different cathode materials[J]. Fire Science and Technology, 2023, 42(5): 598-602. DOI: 10.3969/j.issn.1009-0029.2023.05.004. | |
| 21 | 石爽, 吕娜伟, 马敬轩, 等. 不同类型气体探测对磷酸铁锂电池储能舱过充安全预警有效性对比[J]. 储能科学与技术, 2022, 11(8): 2452-2462. DOI: 10.19799/j.cnki.2095-4239.2022.0240. |
| SHI S, LYU N W, MA J X, et al. Comparative study on the effectiveness of different types of gas detection on the overcharge safety early warning of a lithium iron phosphate battery energy storage compartment[J]. Energy Storage Science and Technology, 2022, 11(8): 2452-2462. DOI: 10.19799/j.cnki. 2095-4239.2022.0240. | |
| 22 | 张青松, 曲奕润, 郝朝龙, 等. 三元锂离子电池热失控气体原位分析[J]. 高电压技术, 2022, 48(7): 2817-2825. DOI: 10.13336/j.1003-6520.hve.20211850. |
| ZHANG Q S, QU Y R, HAO C L, et al. In-situ analysis of thermal runaway gas in ternary lithium-ion battery[J]. High Voltage Engineering, 2022, 48(7): 2817-2825. DOI: 10.13336/j.1003-6520.hve.20211850. | |
| 23 | 陈达, 郝朝龙, 刘添添, 等. 锂离子电池热失控气体拉曼光谱分析方法研究[J]. 中国激光, 2022, 49(23): 2311001. DOI: 10.3788/CJL202249.2311001. |
| CHEN D, HAO C L, LIU T T, et al. Raman spectrum analysis method of thermal runaway gas from lithium-ion batteries[J]. Chinese Journal of Lasers, 2022, 49(23): 2311001. DOI: 10.3788/CJL202249.2311001. | |
| 24 | 赵逸明. 低气压下大尺寸三元锂电池燃爆危险性研究[D]. 广汉: 中国民用航空飞行学院, 2023. DOI: 10.27722/d.cnki.gzgmh. 2023. 000007. |
| 25 | 马彪, 林春景, 刘磊, 等. 锂离子电池热失控产气特性及其可燃极限[J]. 储能科学与技术, 2022, 11(5): 1592-1600. DOI: 10.19799/j.cnki.2095-4239.2021.0618. |
| MA B, LIN C J, LIU L, et al. Venting characteristics and flammability limit of thermal runaway gas of lithium ion battery[J]. Energy Storage Science and Technology, 2022, 11(5): 1592-1600. DOI: 10.19799/j.cnki.2095-4239.2021.0618. | |
| 26 | 夏玉佳, 朱振东. 磷酸铁锂锂离子电池化成产气的机理[J]. 电池, 2020, 50(6): 534-537. DOI: 10.19535/j.1001-1579.2020.06.006. |
| XIA Y J, ZHU Z D. Gas generation mechanism of lithium iron phosphate Li-ion battery during formation[J]. Battery Bimonthly, 2020, 50(6): 534-537. DOI: 10.19535/j.1001-1579.2020.06.006. | |
| 27 | 史晓岩, 马磊磊, 常增花, 等. 化成制度对富锂锰基/硅碳体系电池产气及电化学性能影响[J]. 材料工程, 2022, 50(5): 112-121. DOI: 10.11868/j.issn.1001-4381.2021.000317. |
| SHI X Y, MA L L, CHANG Z H, et al. Influence of formation process on gas generation and electrochemical performance of Li-rich/Si@C Li-ion batteries[J]. Journal of Materials Engineering, 2022, 50(5): 112-121. DOI: 10.11868/j.issn.1001-4381. 2021. 000317. | |
| 28 | ZHANG Q S, NIU J H, ZHAO Z H, et al. Research on the effect of thermal runaway gas components and explosion limits of lithium-ion batteries under different charge states[J]. Journal of Energy Storage, 2022, 45: 103759. DOI: 10.1016/j.est.2021.103759. |
| 29 | RICHARD M N, DAHN J R. Accelerating rate calorimetry study on the thermal stability of lithium intercalated graphite in electrolyte. I. experimental[J]. Journal of the Electrochemical Society, 1999, 146(6): 2068-2077. DOI: 10.1149/1.1391893. |
| 30 | YANG H, BANG H, AMINE K, et al. Investigations of the exothermic reactions of natural graphite anode for Li-ion batteries during thermal runaway[J]. Journal of the Electrochemical Society, 2005, 152(1): A73. DOI: 10.1149/1.1836126. |
| 31 | GACHOT G, GRUGEON S, ESHETU G G, et al. Thermal behaviour of the lithiated-graphite/electrolyte interface through GC/MS analysis[J]. Electrochimica Acta, 2012, 83: 402-409. DOI: 10.1016/j.electacta.2012.08.016. |
| 32 | DIAZ F, WANG Y, WEYHE R, et al. Gas generation measurement and evaluation during mechanical processing and thermal treatment of spent Li-ion batteries[J]. Waste Management, 2019, 84: 102-111. DOI: 10.1016/j.wasman.2018.11.029. |
| 33 | YANG H, SHEN X D. Dynamic TGA-FTIR studies on the thermal stability of lithium/graphite with electrolyte in lithium-ion cell[J]. Journal of Power Sources, 2007, 167(2): 515-519. DOI: 10.1016/j.jpowsour.2007.02.029. |
| 34 | DOUGHTY D H, ROTH E P. A general discussion of Li ion battery safety[J]. Electrochemical Society Interface, 2012, 21(2): 37-44.DOI: 10.1149/2.f03122if. |
| 35 | MACNEIL D D, DAHN J R. Test of reaction kinetics using both differential scanning and accelerating rate calorimetries As applied to the reaction of LixCoO2 in non-aqueous electrolyte[J]. The Journal of Physical Chemistry A, 2001, 105(18): 4430-4439. DOI: 10.1021/jp001187j. |
| 36 | JO M, NOH M, OH P, et al. A new high power LiNi0.81Co0.1Al0.09O2 cathode material for lithium-ion batteries[J]. Advanced Energy Materials, 2014, 4(13). DOI: 10.1002/aenm.201301583. |
| 37 | BANG H J, JOACHIN H, YANG H, et al. Contribution of the structural changes of LiNi0.8Co0.15Al0.05O2 cathodes on the exothermic reactions in Li-ion cells[J]. Journal of the Electrochemical Society, 2006, 153(4): A731. DOI: 10.1149/1. 2171828. |
| 38 | GOLUBKOV A W, SCHEIKL S, PLANTEU R, et al. Thermal runaway of commercial 18650 Li-ion batteries with LFP and NCA cathodes–impact of state of charge and overcharge[J]. RSC Advances, 2015, 5(70): 57171-57186. DOI: 10.1039/C5RA05897J. |
| 39 | WANG H Y, TANG A D, HUANG K L. Oxygen evolution in overcharged LixNi1/3Co1/3Mn1/3O2 electrode and its thermal analysis kinetics[J]. Chinese Journal of Chemistry, 2011, 29(8): 1583-1588. DOI: 10.1002/cjoc.201180284. |
| 40 | 杨梦洁, 杨爱军, 叶奕君, 等. 基于气体分析的锂离子电池热失控早期预警研究进展[J]. 电工技术学报, 2023, 38(17): 4507-4538. DOI: 10.19595/j.cnki.1000-6753.tces.220832. |
| YANG M J, YANG A J, YE Y J, et al. Research progress on early warning of thermal runaway of Li-ion batteries based on gas analysis[J]. Transactions of China Electrotechnical Society, 2023, 38(17): 4507-4538. DOI: 10.19595/j.cnki.1000-6753.tces.220832. | |
| 41 | RÖDER P, BABA N, FRIEDRICH K A, et al. Impact of delithiated Li0FePO4 on the decomposition of LiPF6-based electrolyte studied by accelerating rate calorimetry[J]. Journal of Power Sources, 2013, 236: 151-157. DOI: 10.1016/j.jpowsour. 2013. 02.044. |
| 42 | KONG W H, LI H, HUANG X J, et al. Gas evolution behaviors for several cathode materials in lithium-ion batteries[J]. Journal of Power Sources, 2005, 142(1/2): 285-291. DOI: 10.1016/j.jpowsour.2004.10.008. |
| 43 | GOLUBKOV A W, FUCHS D, WAGNER J, et al. Thermal-runaway experiments on consumer Li-ion batteries with metal-oxide and olivin-type cathodes[J]. RSC Advances, 2014, 4: 3633-3642. |
| 44 | ANDERSSON P, BLOMQVIST P, LORÉN A. et al. Using Fourier transform infrared spectroscopy to determine toxic gases in fires with lithium-ion batteries [J]. Fire and Materials, 2016, DOI: 10.1002/fam.2359. |
| 45 | YANG H, ZHUANG G V, ROSS P N. Thermal stability of LiPF6 salt and Li-ion battery electrolytes containing LiPF6[J]. Journal of Power Sources, 2006, 161(1): 573-579. DOI: 10.1016/j.jpowsour. 2006.03.058. |
| 46 | PASQUIER A D, DISMA F, BOWMER T, et al. Differential scanning calorimetry study of the reactivity of carbon anodes in plastic Li-ion batteries[J]. Journal of the Electrochemical Society, 1998, 145(2): 472-477. DOI: 10.1149/1.1838287. |
| 47 | LIAO Z H, ZHANG S, ZHAO Y K, et al. Experimental evaluation of thermolysis-driven gas emissions from LiPF6-carbonate electrolyte used in lithium-ion batteries[J]. Journal of Energy Chemistry, 2020, 49: 124-135. DOI: 10.1016/j.jechem. 2020. 01.030. |
| 48 | 刘同宇, 李师, 付卫东, 等. 大容量磷酸铁锂动力电池热失控预警策略研究[J]. 中国安全科学学报, 2021, 31(11): 120-126. DOI: 10.16265/j.cnki.issn1003-3033.2021.11.017. |
| LIU T Y, LI S, FU W D, et al. Study on early warning strategy of large LFP traction battery's thermal runaway[J]. China Safety Science Journal, 2021, 31(11): 120-126. DOI: 10.16265/j.cnki.issn1003-3033.2021.11.017. | |
| 49 | CAI T, VALECHA P, TRAN V, et al. Detection of Li-ion battery failure and venting with Carbon Dioxide sensors[J]. eTransportation, 2021, 7: 100100. DOI: 10.1016/j.etran. 2020. 100100. |
| 50 | CAI T, STEFANOPOULOU A G, SIEGEL J B. Early detection for Li-ion batteries thermal runaway based on gas sensing[J]. ECS Transactions, 2019, 89(1): 85-97. DOI: 10.1149/08901.0085ecst. |
| 51 | JIN Y, ZHENG Z K, WEI D H, et al. Detection of micro-scale Li dendrite via H2 gas capture for early safety warning[J]. Joule, 2020, 4(8): 1714-1729. DOI: 10.1016/j.joule.2020.05.016. |
| 52 | 张青松, 曲奕润. 循环老化三元锂离子电池热失控气体毒性研究[J]. 北京航空航天大学学报, 2024, 50(6): 1761-1769. DOI: 10.13700/j.bh.1001-5965.2022.0534. |
| ZHANG Q S, QU Y R. Research on toxicity of gases of thermal runaway released from ternary lithium-ion batteries featuring cyclic aging process[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50(6): 1761-1769. DOI: 10.13700/j.bh.1001-5965.2022.0534. | |
| 53 | FERNANDES Y, BRY A, DE PERSIS S. Identification and quantification of gases emitted during abuse tests by overcharge of a commercial Li-ion battery[J]. Journal of Power Sources, 2018, 389: 106-119. DOI: 10.1016/j.jpowsour.2018.03.034. |
| 54 | RIBIÈRE P, GRUGEON S, MORCRETTE M, et al. Investigation on the fire-induced hazards of Li-ion battery cells by fire calorimetry[J]. Energy & Environmental Science, 2012, 5(1): 5271-5280. DOI: 10.1039/C1EE02218K. |
| 55 | LARSSON F, ANDERSSON P, BLOMQVIST P, et al. Toxic fluoride gas emissions from lithium-ion battery fires[J]. Scientific Reports, 2017, 7(1): 10018. DOI: 10.1038/s41598-017-09784-z. |
| 56 | 陈钦佩, 王学辉, 米文忠. 电动汽车锂离子电池系统热失控气体毒害及爆炸特性研究[J]. 储能科学与技术, 2023, 12(7): 2256-2262. DOI: 10.19799/j.cnki.2095-4239.2023.0294. |
| CHEN Q P, WANG X H, MI W Z. Experiential study on the toxic and explosive characteristics of thermal runaway gas generated in electric-vehicle lithium-ion battery systems[J]. Energy Storage Science and Technology, 2023, 12(7): 2256-2262. DOI: 10.19799/j.cnki.2095-4239.2023.0294. | |
| 57 | KOCH S, FILL A, BIRKE K P. Comprehensive gas analysis on large scale automotive lithium-ion cells in thermal runaway[J]. Journal of Power Sources, 2018, 398: 106-112. DOI: 10.1016/j.jpowsour.2018.07.051. |
| 58 | KENNEDY R W, MARR K C, EZEKOYE O A. Gas release rates and properties from lithium cobalt oxide lithium ion battery arrays[J]. Journal of Power Sources, 2021, 487: 229388. DOI: 10.1016/j.jpowsour.2020.229388. |
| 59 | YUAN L M, DUBANIEWICZ T, ZLOCHOWER I, et al. Experimental study on thermal runaway and vented gases of lithium-ion cells[J]. Process Safety and Environmental Protection, 2020, 144: 186-192. DOI: 10.1016/j.psep.2020.07.028. |
| 60 | LIAO Z H, ZHANG S, LI K, et al. Hazard analysis of thermally abused lithium-ion batteries at different state of charges[J]. Journal of Energy Storage, 2020, 27: 101065. DOI: 10.1016/j.est.2019.101065. |
| 61 | 郝朝龙. 基于拉曼光谱的锂离子电池热失控气体在线检测方法研究[D]. 天津: 中国民航大学, 2022. DOI: 10.27627/d.cnki.gzmhy. 2022.000208. |
| 62 | GERELT-OD B, KIM J, SHIN E, et al. In situ Raman investigation of resting thermal effects on gas emission in charged commercial 18650 lithium ion batteries[J]. Journal of Industrial and Engineering Chemistry, 2021, 96: 339-344. DOI: 10.1016/j.jiec.2021.01.039. |
| 63 | DIAZ F, WANG Y, WEYHE R, et al. Gas generation measurement and evaluation during mechanical processing and thermal treatment of spent Li-ion batteries[J]. Waste Management, 2019, 84: 102-111. DOI: 10.1016/j.wasman.2018.11.029. |
| 64 | LIU P J, LI Y Q, MAO B B, et al. Experimental study on thermal runaway and fire behaviors of large format lithium iron phosphate battery[J]. Applied Thermal Engineering, 2021, 192: 116949. DOI: 10.1016/j.applthermaleng.2021.116949. |
| 65 | MICHALAK B, SOMMER H, MANNES D, et al. Gas evolution in operating lithium-ion batteries studied in situ by neutron imaging[J]. Scientific Reports, 2015, 5: 15627. DOI: 10.1038/srep15627. |
| 66 | FINEGAN D P, SCHEEL M, ROBINSON J B, et al. In-operando high-speed tomography of lithium-ion batteries during thermal runaway[J]. Nature Communications, 2015, 6: 6924. DOI: 10.1038/ncomms7924. |
| 67 | NIE K H, WANG X L, QIU J L, et al. Increasing poly(ethylene oxide) stability to 4.5 V by surface coating of the cathode[J]. ACS Energy Letters, 2020, 5(3): 826-832. DOI: 10.1021/acsenergylett.9b02739. |
| 68 | WILLSTRAND O, PUSHP M, ANDERSSON P, et al. Impact of different Li-ion cell test conditions on thermal runaway characteristics and gas release measurements[J]. Journal of Energy Storage, 2023, 68: 107785. DOI: 10.1016/j.est. 2023. 107785. |
| 69 | SUN J, LI J G, ZHOU T, et al. Toxicity, a serious concern of thermal runaway from commercial Li-ion battery[J]. Nano Energy, 2016, 27: 313-319. DOI: 10.1016/j.nanoen.2016.06.031. |
| 70 | GACHOT G, RIBIÈRE P, MATHIRON D, et al. Gas chromatography/mass spectrometry as a suitable tool for the Li-ion battery electrolyte degradation mechanisms study[J]. Analytical Chemistry, 2011, 83(2): 478-485. DOI: 10.1021/ac101948u. |
| 71 | KUMAI K, MIYASHIRO H, KOBAYASHI Y, et al. Gas generation mechanism due to electrolyte decomposition in commercial lithium-ion cell[J]. Journal of Power Sources, 1999, 81: 715-719. DOI: 10.1016/S0378-7753(98)00234-1. |
| 72 | STURK D, ROSELL L, BLOMQVIST P, et al. Analysis of Li-ion battery gases vented in an inert atmosphere thermal test chamber[J]. Batteries, 2019, 5(3): 61. DOI: 10.3390/batteries5030061. |
| 73 | 张青松, 包防卫, 牛江昊. 环境压力对锂电池热失控产气及爆炸风险的影响[J]. 储能科学与技术, 2023, 12(7): 2263-2270. DOI: 10. 19799/j.cnki.2095-4239.2023.0192. |
| ZHANG Q S, BAO F W, NIU J H. Risk analysis method of thermal runaway gas explosion in lithium-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(7): 2263-2270. DOI: 10.19799/j.cnki.2095-4239.2023.0192. | |
| 74 | CHEN S C, WANG Z R, WANG J H, et al. Lower explosion limit of the vented gases from Li-ion batteries thermal runaway in high temperature condition[J]. Journal of Loss Prevention in the Process Industries, 2020, 63: 103992. DOI: 10.1016/j.jlp. 2019. 103992. |
| 75 | LARSSON F, ANDERSSON P, BLOMQVIST P, et al. Characteristics of lithium-ion batteries during fire tests[J]. Journal of Power Sources, 2014, 271: 414-420. DOI: 10.1016/j.jpowsour. 2014.08.027. |
| 76 | MAO B B, LIU C Q, YANG K, et al. Thermal runaway and fire behaviors of a 300 Ah lithium ion battery with LiFePO4 as cathode[J]. Renewable and Sustainable Energy Reviews, 2021, 139: 110717. DOI: 10.1016/j.rser.2021.110717. |
| 77 | 王铭民, 孙磊, 郭鹏宇, 等. 基于气体在线监测的磷酸铁锂储能电池模组过充热失控特性[J]. 高电压技术, 2021, 47(1): 279-286. DOI: 10.13336/j.1003-6520.hve.20200227004. |
| WANG M M, SUN L, GUO P Y, et al. Overcharge and thermal runaway characteristics of lithium iron phosphate energy storage battery modules based on gas online monitoring[J]. High Voltage Engineering, 2021, 47(1): 279-286. DOI: 10.13336/j.1003-6520.hve.20200227004. | |
| 78 | 王志荣, 杨赟, 佟轩, 等. 基于气体监测的锂离子电池组热失控自动报警器及其监测方法: CN108008083A[P]. 2018-05-08. |
| 79 | 全国汽车标准化技术委员会电动车辆分技术委员会. 关于征求«电动汽车动力蓄电池峰值功率试验方法»等两项汽车行业标准意见的函[EB/OL]. [2024-06-05]. http://www.catarc.org.cn:8088/zxd/portal/detail/zqyj/496. |
| National Technical Committee of Auto Standardization. Letter on soliciting opinions on two automotive industry standards, including the peak power test method for electric vehicle power batteries[EB/OL]. [2024-06-05]. http://www.catarc.org.cn:8088/zxd/portal/detail/zqyj/496. | |
| 80 | CHEN M R, ZHANG M, YANG Z Y, et al. AI-driven wearable mask-inspired self-healing sensor array for detection and identification of volatile organic compounds[J]. Advanced Functional Materials, 2024, 34(3): 2309732. DOI: 10.1002/adfm. 202309732. |
| [1] | Zhonglin SUN, Jiabo LI, Di TIAN, Zhixuan WANG, Xiaojing XING. Useful life prediction for lithium-ion batteries based on COA-LSTM and VMD [J]. Energy Storage Science and Technology, 2024, 13(9): 3254-3265. |
| [2] | Jizhong LU, Simin PENG, Xiaoyu LI. State-of-health estimation of lithium-ion batteries based on multifeature analysis and LSTM-XGBoost model [J]. Energy Storage Science and Technology, 2024, 13(9): 2972-2982. |
| [3] | Xuefeng HU, Xianlei CHANG, Xiaoxiao LIU, Wei XU, Wenbin ZHANG. SOC estimation of lithium-ion batteries under multiple temperatures conditions based on MIARUKF algorithm [J]. Energy Storage Science and Technology, 2024, 13(9): 2983-2994. |
| [4] | Siyuan SHEN, Yakun LIU, Donghuang LUO, Yujun LI, Wei HAO. Transient overvoltage protection design and circuit development for energy storage lithium-ion battery modules [J]. Energy Storage Science and Technology, 2024, 13(9): 3277-3286. |
| [5] | Yuan CHEN, Siyuan ZHANG, Yujing CAI, Xiaohe HUANG, Yanzhong LIU. State-of-health estimation of lithium batteries based on polynomial feature extension of the CNN-transformer model [J]. Energy Storage Science and Technology, 2024, 13(9): 2995-3005. |
| [6] | Ruihe XING, Suting WENG, Yejing LI, Jiayi ZHANG, Hao ZHANG, Xuefeng WANG. AI-assisted battery material characterization and data analysis [J]. Energy Storage Science and Technology, 2024, 13(9): 2839-2863. |
| [7] | Hongsheng GUAN, Cheng QIAN, Bo SUN, Yi REN. Predicting capacity degradation trajectory for lithium-ion batteries under limited data conditions [J]. Energy Storage Science and Technology, 2024, 13(9): 3084-3093. |
| [8] | Xue KE, Huawei HONG, Peng ZHENG, Zhicheng LI, Peixiao FAN, Jun YANG, Yuzheng GUO, Chunguang KUAI. Estimating lithium-ion battery health using automatic feature extraction and channel attention mechanisms for multi-timescale modeling [J]. Energy Storage Science and Technology, 2024, 13(9): 3059-3071. |
| [9] | Chengwen TIAN, Bingxiang SUN, Xinze ZHAO, Zhicheng FU, Shichang MA, Bo ZHAO, Xubo ZHANG. Accelerated life prediction of lithium-ion batteries using data-driven approaches [J]. Energy Storage Science and Technology, 2024, 13(9): 3103-3111. |
| [10] | Qingbo LI, Maohui ZHANG, Ying LUO, Taolin LYU, Jingying XIE. Lithium-ion battery state of charge estimation based on equivalent circuit model [J]. Energy Storage Science and Technology, 2024, 13(9): 3072-3083. |
| [11] | Bingxiang SUN, Xin YANG, Xingzhen ZHOU, Shichang MA, Zhihao WANG, Weige ZHANG. Comparative parametric study of metaheuristics based on impedance modeling for lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(9): 2952-2962. |
| [12] | Yufeng HUANG, Huanchao LIANG, Lei XU. Kalman filter optimize Transformer method for state of health prediction on lithium-ion battery [J]. Energy Storage Science and Technology, 2024, 13(8): 2791-2802. |
| [13] | Zheng CHEN, Bo YANG, Zhigang ZHAO, Jiangwei SHEN, Renxin XIAO, Xuelei XIA. State of charge estimation considering lithium battery temperature and aging [J]. Energy Storage Science and Technology, 2024, 13(8): 2813-2822. |
| [14] | Lijun XU, Lihong XU, Fangyuxuan SONG. System fault monitoring and diagnostic analysis of electrochemical energy storage power stations [J]. Energy Storage Science and Technology, 2024, 13(8): 2788-2790. |
| [15] | Guohe CHEN, Peizhao LYU, Menghan LI, Zhonghao RAO. Research progress on thermal runaway propagation characteristics of lithium-ion batteries and its inhibiting strategies [J]. Energy Storage Science and Technology, 2024, 13(7): 2470-2482. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||