Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (7): 2181-2191.doi: 10.19799/j.cnki.2095-4239.2024.0369
• Special Issue on Low Temperature Batteries • Previous Articles Next Articles
Songyan LIU1(), Weiliang WANG1(), Shiliang PENG1, Junfu LYU2
Received:
2024-04-28
Revised:
2024-06-06
Online:
2024-07-28
Published:
2024-07-23
Contact:
Weiliang WANG
E-mail:l1729370366@163.com;wangwl@jnu.edu.cn
CLC Number:
Songyan LIU, Weiliang WANG, Shiliang PENG, Junfu LYU. Thermal management system for power battery in high/low-temperature environments[J]. Energy Storage Science and Technology, 2024, 13(7): 2181-2191.
1 | HANSEN J, SATO M, RUEDY R, et al. Global temperature change[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(39): 14288-14293. DOI: 10.1073/pnas.0606291103. |
2 | THAKUR A K, PRABAKARAN R, ELKADEEM M R, et al. A state of art review and future viewpoint on advance cooling techniques for Lithium-ion battery system of electric vehicles[J]. Journal of Energy Storage, 2020, 32: 101771. DOI: 10.1016/j.est.2020.101771. |
3 | 贺元骅, 余兴科, 樊榕, 等. 动力锂离子电池热管理技术研究进展[J]. 电池, 2022, 52(3): 337-341. DOI: 10.19535/j.1001-1579.2022.03.024. |
HE Y H, YU X K, FAN R, et al. Research progress in thermal management technology of power Li-ion battery[J]. Battery Bimonthly, 2022, 52(3): 337-341. DOI: 10.19535/j.1001-1579.2022.03.024. | |
4 | JAGUEMONT J, VAN MIERLO J. A comprehensive review of future thermal management systems for battery-electrified vehicles[J]. Journal of Energy Storage, 2020, 31: 101551. DOI: 10.1016/j.est.2020.101551. |
5 | ZHAO Y Q, ZOU B Y, ZHANG T T, et al. A comprehensive review of composite phase change material based thermal management system for lithium-ion batteries[J]. Renewable and Sustainable Energy Reviews, 2022, 167: 112667. DOI: 10.1016/j.rser.2022.112667. |
6 | RAO Z H, WANG S F, WU M C, et al. Experimental investigation on thermal management of electric vehicle battery with heat pipe[J]. Energy Conversion and Management, 2013, 65: 92-97. DOI: 10.1016/j.enconman.2012.08.014. |
7 | GUPTA A, MANTHIRAM A. Designing advanced lithium-based batteries for low-temperature conditions[J]. Advanced Energy Materials, 2020, 10(38): 2001972. DOI: 10.1002/aenm.202001972. |
8 | 陆洋, 闫帅帅, 马骁, 等. 低温锂电池电解液的研究与应用[J/OL]. 储能科学与技术: 1-19[2024-05-09]. https://doi.org/10.19799/j.cnki.2095-4239.2024.0313. |
LU Y, YAN S S, MA X, et al. Research and application of low temperature lithium battery electrolyte[J/OL]. Energy Storage Science and Technology: 1-19[2024-05-09]. https://doi.org/10.19799/j.cnki.2095-4239.2024.0313. | |
9 | VLAHINOS A, PESARAN A A. Energy efficient battery heating in cold climates[C]// SAE Technical Paper Series. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2002: 826-833. DOI: 10.4271/2002-01-1975. |
10 | XIONG R, ZHANG K, QU S Y, et al. A fast pre-heating method for lithium-ion batteries by wireless energy transfer at low temperatures[J]. eTransportation, 2023, 16: 100227. DOI: 10.1016/j.etran.2023.100227. |
11 | 潘成久, 郭宏飞. 电动汽车电池包保温与加热的研究[C]// 2013中国汽车工程学会年会论文集. 北京, 2013: 500-503. |
12 | GUO R, LI L, SUN Z Y, et al. An integrated thermal management strategy for cabin and battery heating in range-extended electric vehicles under low-temperature conditions[J]. Applied Thermal Engineering, 2023, 228: 120502. DOI: 10.1016/j.applthermaleng. 2023.120502. |
13 | 张承宁, 雷治国, 董玉刚. 电动汽车锂离子电池低温加热方法研究[J]. 北京理工大学学报, 2012, 32(9): 921-925. DOI: 10.15918/j.tbit1001-0645.2012.09.019. |
ZHANG C N, LEI Z G, DONG Y G. Method for heating low-temperature lithium battery in electric vehicle[J]. Transactions of Beijing Institute of Technology, 2012, 32(9): 921-925. DOI: 10.15918/j.tbit1001-0645.2012.09.019. | |
14 | SONG H S, JEONG J B, LEE B H, et al. Experimental study on the effects of pre-heating a battery in a low-temperature environment[C]// 2012 IEEE Vehicle Power and Propulsion Conference. IEEE, 2012: 1198-1201. DOI: 10.1109/VPPC.2012.6422509. |
15 | 温小燕. 基于复合相变材料的锂离子电池低温热管理系统研究[D]. 广州: 华南理工大学, 2017. |
WEN X Y. Study on low-temperature thermal management system of Li-ion battery using phase change material[D]. Guangzhou: South China University of Technology, 2017. | |
16 | BAI F F, CHEN M B, SONG W J, et al. Investigation of thermal management for lithium-ion pouch battery module based on phase change slurry and mini channel cooling plate[J]. Energy, 2019, 167: 561-574. DOI: 10.1016/j.energy.2018.10.137. |
17 | QU J, WANG C, LI X J, et al. Heat transfer performance of flexible oscillating heat pipes for electric/hybrid-electric vehicle battery thermal management[J]. Applied Thermal Engineering, 2018, 135: 1-9. DOI: 10.1016/j.applthermaleng.2018.02.045. |
18 | KIANI M, OMIDDEZYANI S, HOUSHFAR E, et al. Lithium-ion battery thermal management system with Al2O3/AgO/CuO nanofluids and phase change material[J]. Applied Thermal Engineering, 2020, 180: 115840. DOI: 10.1016/j.applthermaleng. 2020.115840. |
19 | CABEZA L F, FRAZZICA A, CHÀFER M, et al. Research trends and perspectives of thermal management of electric batteries: Bibliometric analysis[J]. Journal of Energy Storage, 2020, 32: 101976. DOI: 10.1016/j.est.2020.101976. |
20 | WU T T, WANG C H, HU Y X, et al. Research on novel battery thermal management system coupling with shape memory PCM and molecular dynamics analysis[J]. Applied Thermal Engineering, 2022, 210: 118373. DOI: 10.1016/j.applthermaleng. 2022.118373. |
21 | 邓芳. 方形动力锂电池组PCM液冷复合散热性能研究[D]. 重庆: 重庆交通大学, 2021. DOI: 10.27671/d.cnki.gcjtc.2021.000499. |
DENG F. Study on compound heat dissipation performance of PCM liquid cooling for square power lithium battery pack[D]. Chongqing: Chongqing Jiaotong University, 2021. DOI: 10.27671/d.cnki.gcjtc.2021.000499. | |
22 | JOUHARA H, CHAUHAN A, NANNOU T, et al. Heat pipe based systems - Advances and applications[J]. Energy, 2017, 128: 729-754. DOI: 10.1016/j.energy.2017.04.028. |
23 | FAGHRI A. Frozen start-up behavior of low-temperature heat pipes[J]. International Journal of Heat and Mass Transfer, 1992, 35(7): 1681-1694. DOI: 10.1016/0017-9310(92)90139-J. |
24 | CHIOU R Y, CHEN J S J, LU L, et al. Prediction of heat transfer behavior of carbide inserts with embedded heat pipes for dry machining[C]// Materials: Processing, Characterization and Modeling of Novel Nano-Engineered and Surface Engineered Materials. ASMEDC, 2002. DOI: 10.1115/imece2002-32656. |
25 | AGYENIM F, HEWITT N, EAMES P, et al. A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS)[J]. Renewable and Sustainable Energy Reviews, 2010, 14(2): 615-628. DOI: 10.1016/j.rser.2009.10.015. |
26 | CABEZA L F, CASTELL A, BARRENECHE C, et al. Materials used as PCM in thermal energy storage in buildings: A review[J]. Renewable and Sustainable Energy Reviews, 2011, 15(3): 1675-1695. DOI: 10.1016/j.rser.2010.11.018. |
27 | AL-ABIDI A A, BIN MAT S, SOPIAN K, et al. CFD applications for latent heat thermal energy storage: A review[J]. Renewable and Sustainable Energy Reviews, 2013, 20: 353-363. DOI: 10.1016/j.rser.2012.11.079. |
28 | JILTE R D, KUMAR R, AHMADI M H, et al. Battery thermal management system employing phase change material with cell-to-cell air cooling[J]. Applied Thermal Engineering, 2019, 161: 114199. DOI: 10.1016/j.applthermaleng.2019.114199. |
29 | XIE J H, GE Z J, ZANG M Y, et al. Structural optimization of lithium-ion battery pack with forced air cooling system[J]. Applied Thermal Engineering, 2017, 126: 583-593. DOI: 10.1016/j.applthermaleng.2017.07.143. |
[1] | Guohe CHEN, Peizhao LYU, Menghan LI, Zhonghao RAO. Research progress on thermal runaway propagation characteristics of lithium-ion batteries and its inhibiting strategies [J]. Energy Storage Science and Technology, 2024, 13(7): 2470-2482. |
[2] | Chenyang ZHAO, Xiaokun YU, Yubing TAO. Preparation and characterization of modified CuO nanoparticles/n-octadecane phase change material [J]. Energy Storage Science and Technology, 2024, 13(6): 1786-1793. |
[3] | Peng NI, Shihao CAO. Melting heat storage properties of metal honeycomb/paraffin composite phase change materials [J]. Energy Storage Science and Technology, 2024, 13(2): 425-435. |
[4] | Yunjie LU. Research on control technology of electric vehicle energy storage system [J]. Energy Storage Science and Technology, 2024, 13(2): 608-610. |
[5] | Shaohong ZENG, Weixiong WU, Jizhen LIU, Shuangfeng WANG, Shifeng YE, Zhenyu FENG. A review of research on immersion cooling technology for lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(9): 2888-2903. |
[6] | Jiangtian ZHU, Yuan ZHANG, Yibin LUO, Huiting YANG, Jie LI, Xiaoqin SUN. Optimization of 5G communication base station cabinet based on heat storage of phase change material [J]. Energy Storage Science and Technology, 2023, 12(9): 2789-2798. |
[7] | Ruijie HONG, Danzhen GU, Ruanqing MO, Sinan CAI, Chaolin ZHANG. Research on optimization of EV energy storage V2G strategy based on user preference [J]. Energy Storage Science and Technology, 2023, 12(8): 2659-2667. |
[8] | Jinghao YAN, Jie LI, Yiming LI, Xiaoqin SUN, Lina XI, Changwei JIANG. Numerical simulation study on heat storage performance of composite phase-change units based on gradient-porosity metal foam [J]. Energy Storage Science and Technology, 2023, 12(8): 2424-2434. |
[9] | Qi ZHANG, Yinlei LI, Yanfang LI, Jun SONG, Xuehong WU, Chongyang LIU, Xueling ZHANG. Preparation and thermal characterization of expanded graphite/multiwalled carbon nanotube-based eutectic salt-composite phase change materials [J]. Energy Storage Science and Technology, 2023, 12(8): 2435-2443. |
[10] | Xinlei CAI, Jinzhou ZHU, Mai LIU, Jiale LIU, Zijie MENG, Yang YU. Peak shaving strategy of electric vehicles based on an improved Dingo optimization algorithm [J]. Energy Storage Science and Technology, 2023, 12(6): 1913-1919. |
[11] | Hongbing CHEN, Xuening GAO, Tao LIU, Congcong WANG, Rui ZHAO, Junhui SUN, Chuanling WANG, Di HE. Performance of a solar PV/T system applying a paraffin/graphene oxide composite phase change material [J]. Energy Storage Science and Technology, 2023, 12(3): 661-668. |
[12] | Xueqing SHEN, Wei CHEN. Thermal management performance of batteries with embedded tree-like fins for phase transition layers [J]. Energy Storage Science and Technology, 2023, 12(2): 459-467. |
[13] | Jinmei DONG, Qiyuan LIU, Fang WU, Lirui JIA, Jing WEN, Chenggong CHANG, Weixin ZHENG, Xueying XIAO. Phase change characteristics and proportion adjustment of fatty acid binary energy storage materials [J]. Energy Storage Science and Technology, 2023, 12(2): 349-356. |
[14] | Zhaofeng DAI, Zhu JIANG, Dongliang ZHAO, Zhiyuan ZHANG, Xiaosong ZHANG. Development and system application of phase change material for cold storage of fruits and vegetables [J]. Energy Storage Science and Technology, 2023, 12(12): 3720-3729. |
[15] | Hongbing CHEN, Chunyang LI, Congcong WANG, Men LI, Haoyang LU, Yuhang LIU, Yan ZHANG. Preparation and properties of binary composite phase-change materials based on solar low-temperature heat storage [J]. Energy Storage Science and Technology, 2023, 12(12): 3663-3669. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||