Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (7): 2171-2180.doi: 10.19799/j.cnki.2095-4239.2024.0374
• Special Issue on Low Temperature Batteries • Previous Articles Next Articles
Guangyu CHENG1(), Xinwei LIU2, Shuo LIU1, Haitao GU1, Ke WANG1
Received:
2024-05-06
Revised:
2024-05-31
Online:
2024-07-28
Published:
2024-07-23
Contact:
Guangyu CHENG
E-mail:chengguangyu12@126.com
CLC Number:
Guangyu CHENG, Xinwei LIU, Shuo LIU, Haitao GU, Ke WANG. Controlling electrolyte solvent components to enhance cycle life of LCO/C low-temperature 18650 batteries[J]. Energy Storage Science and Technology, 2024, 13(7): 2171-2180.
Table 4
Results of charge retention capacity of different batteries"
电池编号 | 初始容量/mAh | 保持容量/mAh | 保持率 | 恢复容量/mAh | 恢复率 |
---|---|---|---|---|---|
LTA-1 | 2178.4 | 1988.9 | 91.30% | 2139.4 | 98.21% |
LTA-2 | 2179.9 | 1988.8 | 91.23% | 2139.2 | 98.13% |
LTB-1 | 2209.8 | 2045.0 | 92.54% | 2159.3 | 97.71% |
LTB-2 | 2213.1 | 2053.3 | 92.78% | 2166.1 | 97.88% |
LTC-1 | 2150.3 | 1978.3 | 92.00% | 2084.8 | 96.95% |
LTC-2 | 2157.4 | 1987.6 | 92.13% | 2136.3 | 96.61% |
Table 5
Statistical data on the cycle performance of different batteries"
电池编号 | 初始容量/mAh | 初始交流内阻 /mΩ | 循环次数 | 循环剩余容量 /mAh | 循环容量保持率 | 循环后 交流内阻/mΩ | 内阻增长率 |
---|---|---|---|---|---|---|---|
LTA-1 | 2271.7 | 15.45 | 478 | 1760.1 | 77.48% | 32.6 | 111.00% |
LTA-2 | 2274.7 | 15.41 | 442 | 1756.9 | 77.24% | 31.4 | 103.76% |
LTA-3 | 2272 | 15.61 | 431 | 1756.4 | 77.31% | 33.5 | 114.61% |
LTB-1 | 2267.1 | 14.88 | 1500 | 1925.7 | 84.94% | 43.2 | 190.32% |
LTB-2 | 2268.8 | 14.45 | 1500 | 1952.1 | 86.04% | 42.7 | 195.50% |
LTB-3 | 2259.2 | 15.02 | 1500 | 1934.5 | 85.63% | 43.1 | 186.95% |
LTC-1 | 2258.4 | 16.23 | 1500 | 1908.7 | 84.52% | 54.9 | 238.26% |
LTC-2 | 2270.5 | 15.83 | 1500 | 1931.6 | 85.07% | 52.7 | 232.91% |
LTC-3 | 2262.5 | 15.96 | 1500 | 1923.8 | 85.03% | 53.8 | 237.09% |
DB-1 | 2258.3 | 16.54 | 305 | 1753.3 | 77.64% | 34.6 | 109.19% |
DB-2 | 2263 | 16.78 | 326 | 1830.9 | 80.91% | 35.8 | 113.35% |
1 | PIAO N, GAO X N, YANG H C, et al. Challenges and development of lithium-ion batteries for low temperature environments[J]. eTransportation, 2022, 11: 100145. DOI: 10.1016/j.etran.2021.100145. |
2 | RUAN H J, BARRERAS J V, STEINHARDT M, et al. The heating triangle: A quantitative review of self-heating methods for lithium-ion batteries at low temperatures[J]. Journal of Power Sources, 2023, 581: 233484. DOI: 10.1016/j.jpowsour.2023.233484. |
3 | 明海, 刘巍, 周洪, 等. 军用低温起动电池发展研判[J]. 电源技术, 2020, 44(4): 631-635. DOI: 10.3969/j.issn.1002-087X.2020.04.039. |
MING H, LIU W, ZHOU H, et al. Development of low temperature starting batteries in military applications[J]. Chinese Journal of Power Sources, 2020, 44(4): 631-635. DOI: 10.3969/j.issn.1002-087X.2020.04.039. | |
4 | HOU J B, YANG M, WANG D Y, et al. Fundamentals and challenges of lithium ion batteries at temperatures between–40 and 60 ℃[J]. Advanced Energy Materials, 2020, 10(18): 1904152. DOI: 10.1002/aenm.201904152. |
5 | HOLOUBEK J, YIN Y J, LI M Q, et al. Exploiting mechanistic solvation kinetics for dual-graphite batteries with high power output at extremely low temperature[J]. Angewandte Chemie International Edition, 2019, 58(52): 18892-18897. DOI: 10.1002/anie.201912167. |
6 | XU J, WANG X, YUAN N Y, et al. Extending the low temperature operational limit of Li-ion battery to -80 ℃[J]. Energy Storage Materials, 2019, 23: 383-389. DOI: 10.1016/j.ensm.2019.04.033. |
7 | LUO L B, CHEN K A, CHEN H, et al. Enabling ultralow-temperature (-70 ℃) lithium-ion batteries: Advanced electrolytes utilizing weak-solvation and low-viscosity nitrile cosolvent[J]. Advanced Materials, 2024, 36(5): 2308881. DOI: 10.1002/adma.202308881. |
8 | TAN S, SHADIKE Z, CAI X Y, et al. Review on low-temperature electrolytes for lithium-ion and lithium metal batteries[J]. Electrochemical Energy Reviews, 2023, 6(1): 35. DOI: 10.1007/s41918-023-00199-1. |
9 | GUPTA A, MANTHIRAM A. Designing advanced lithium-based batteries for low-temperature conditions[J]. Advanced Energy Materials, 2020, 10(38): 2001972. DOI: 10.1002/aenm.202001972. |
10 | HUBBLE D, BROWN D E, ZHAO Y Z, et al. Liquid electrolyte development for low-temperature lithium-ion batteries[J]. Energy & Environmental Science, 2022, 15(2): 550-578. DOI: 10.1039/D1EE01789F. |
11 | OUYANG D X, HE Y P, WENG J W, et al. Influence of low temperature conditions on lithium-ion batteries and the application of an insulation material[J]. RSC Advances, 2019, 9(16): 9053-9066. DOI: 10.1039/c9ra00490d. |
12 | ZHANG J N, ZHANG J J, LIU T T, et al. Toward low-temperature lithium batteries: Advances and prospects of unconventional electrolytes[J]. Advanced Energy and Sustainability Research, 2021, 2(10): 2100039. DOI: 10.1002/aesr.202100039. |
13 | ZHANG N, DENG T, ZHANG S Q, et al. Critical review on low-temperature Li-ion/metal batteries[J]. Advanced Materials, 2022, 34(15): e2107899. DOI: 10.1002/adma.202107899. |
14 | 李昌豪,汪书苹,杨献坤,等.低温型锂离子电池中的非水电解质研究进展[J/OL].储能科学与技术.[2024-01-01].https://doi.org/10.19799/j.cnki.2095-4239.2024.0116. |
LI C H, WANG S P, YANG X K, et al. Research progress of non-aqueous electrolyte in low-temperature lithium-ion battery[J/OL]. Energy Storage Science and Technology. [2024-01-01]. https://doi.org/10.19799/j.cnki.2095-4239.2024.0116. | |
15 | SINNOTT R K. Chemical engineering design[M]. 4th ed. Massachusetts: Butterworth-Heinemann, 2005. |
16 | LIU J P, YUAN B T, HE N D, et al. Reconstruction of LiF-rich interphases through an anti-freezing electrolyte for ultralow-temperature LiCoO2 batteries[J]. Energy & Environmental Science, 2023, 16(3): 1024-1034. DOI: 10.1039/D2EE02411J. |
17 | YANG G H, SHI J L, SHEN C, et al. Improving the cyclability performance of lithium-ion batteries by introducing lithium difluorophosphate (LiPO2F2) additive[J]. RSC Advances, 2017, 7(42): 26052-26059. DOI: 10.1039/C7RA03926C. |
18 | LI L C, LV W X, CHEN J, et al. Lithium difluorophosphate (LiPO2F2): An electrolyte additive to help boost low-temperature behaviors for lithium-ion batteries[J]. ACS Applied Energy Materials, 2022, 5(9): 11900-11914. DOI: 10.1021/acsaem.2c02658. |
19 | QIU J W, GUO J, LI J H, et al. Insight into the contribution of the electrolyte additive LiBF4 in high-voltage LiCoO2||SiO/C pouch cells[J]. ACS Applied Materials & Interfaces, 2023, 15(49): 56918-56929. DOI: 10.1021/acsami.3c10903. |
20 | CHENG H R, SUN Q J, LI L L, et al. Emerging era of electrolyte solvation structure and interfacial model in batteries[J]. ACS Energy Letters, 2022, 7(1): 490-513. DOI: 10.1021/acsenergylett.1c02425. |
21 | XIAO P T, YUN X R, CHEN Y F, et al. Insights into the solvation chemistry in liquid electrolytes for lithium-based rechargeable batteries[J]. Chemical Society Reviews, 2023, 52(15): 5255-5316. DOI: 10.1039/d3cs00151b. |
22 | JOHNSON N M, YANG Z Z, LIU Q, et al. Enabling non-carbonate electrolytes for silicon anode batteries using fluoroethylene carbonate[J]. Journal of the Electrochemical Society, 2022, 169(4): 040527. DOI: 10.1149/1945-7111/ac644b. |
[1] | Hong ZHOU, Zhulin XIN, Hao FU, Qiang ZHANG, Feng WEI. Analysis of the key materials employed in solid-state lithium batteries based on patent data mining [J]. Energy Storage Science and Technology, 2024, 13(7): 2386-2398. |
[2] | Guohe CHEN, Peizhao LYU, Menghan LI, Zhonghao RAO. Research progress on thermal runaway propagation characteristics of lithium-ion batteries and its inhibiting strategies [J]. Energy Storage Science and Technology, 2024, 13(7): 2470-2482. |
[3] | Changhao LI, Shuping WANG, Xiankun YANG, Ziqi ZENG, Xinyue ZHOU, Jia XIE. Nonaqueous electrolyte in low-temperature lithium-ion battery [J]. Energy Storage Science and Technology, 2024, 13(7): 2286-2299. |
[4] | Zongxun LI, Qiuqiu LYU, Haoyu ZHAO, Jianyu HE, Yang LIU, Zaihong SUN, Kaihua SUN, Tenglong ZHU. Research of GDC barrier layer applications by hydrothermal insitu growth in industrial-sized SOFC [J]. Energy Storage Science and Technology, 2024, 13(7): 2407-2413. |
[5] | Sen JIANG, Long CHEN, Chuangchao SUN, Jinze WANG, Ruhong LI, Xiulin FAN. Low-temperature lithium battery electrolytes: Progress and perspectives [J]. Energy Storage Science and Technology, 2024, 13(7): 2270-2285. |
[6] | Chengxin LIU, Ziheng LI, Zeyu CHEN, Pengxiang LI, Qingyi TAO. Characterization study on overheat-induced thermal runaway for lithium-ion battery in energy storage [J]. Energy Storage Science and Technology, 2024, 13(7): 2425-2431. |
[7] | Yang LU, Shuaishuai YAN, Xiao MA, Zhi LIU, Weili ZHANG, Kai LIU. Low-temperature electrolytes and their application in lithium batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2224-2242. |
[8] | Shijie LIAO, Ying WEI, Yunhui HUANG, Renzong HU, Henghui XU. 1,3-Difluorobenzene diluent-stabilizing electrode interface for high-performance low-temperature lithium metal batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2124-2130. |
[9] | Xiang LI, Dezhong LIU, Kai YUAN, Dapeng CHEN. Solid-state electrolyte for low-temperature lithium metal batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2327-2347. |
[10] | Meilong WANG, Yurui XUE, Wenxi HU, Keyu DU, Ruitao SUN, Bin ZHANG, Ya YOU. Design and research of all-ether high-entropy electrolyte for low-temperature lithium iron phosphate batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2131-2140. |
[11] | Haotian WANG, Yonggang WANG, Xiaoli DONG. Advances in low-temperature organic batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2259-2269. |
[12] | Guozheng MA, Jinwei CHEN, Xingyu XIONG, Zhenzhong YANG, Gang ZHOU, Rengzong HU. High-rate lithium storage performance of SnSb-Li4Ti5O12 composite anode for Li-ion batteries at low-temperature [J]. Energy Storage Science and Technology, 2024, 13(7): 2107-2115. |
[13] | Wentao WANG, Yifan WEI, Kun HUANG, Guowei LV, Siyao ZHANG, Xinya TANG, Zeyan CHEN, Qingyuan LIN, Zhipeng MU, Kunhua WANG, Hua CAI, Jun CHEN. Testing standards and developmental advances for low-temperature Li-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2300-2307. |
[14] | Zheng LI, Zhenzhong YANG, Qiong WANG, Renzong HU. Patent intelligence analysis of the research progress in low-temperature electrolytes for Li-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2317-2326. |
[15] | Fei ZHAO, Yinghua CHEN, Zheng MA, Qian LI, Jun MING. Advances in low-temperature electrolytes for potassium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2308-2316. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||