Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (9): 2983-2994.doi: 10.19799/j.cnki.2095-4239.2024.0341
Previous Articles Next Articles
Xuefeng HU(), Xianlei CHANG, Xiaoxiao LIU, Wei XU, Wenbin ZHANG
Received:
2024-04-18
Revised:
2024-05-30
Online:
2024-09-28
Published:
2024-09-20
Contact:
Xuefeng HU
E-mail:hxu123@163.com
CLC Number:
Xuefeng HU, Xianlei CHANG, Xiaoxiao LIU, Wei XU, Wenbin ZHANG. SOC estimation of lithium-ion batteries under multiple temperatures conditions based on MIARUKF algorithm[J]. Energy Storage Science and Technology, 2024, 13(9): 2983-2994.
Table 2
Comparison of SOC estimation errors of different algorithms under FUDS operating conditions"
温度 | EKF | UKF | RUKF | ARUKF | MIARUKF | MIARUKF+UKF | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
AAE | MAE | AAE | MAE | AAE | MAE | AAE | MAE | AAE | MAE | AAE | MAE | |
-10 ℃ | 2.68% | 5.13% | 1.99% | 4.93% | 1.77% | 2.44% | 1.29% | 2.22% | 0.93% | 1.76% | 0.42% | 1.05% |
25 ℃ | 1.73% | 3.40% | 1.68% | 2.85% | 1.47% | 2.12% | 1.20% | 1.91% | 0.53% | 1.12% | 0.25% | 0.70% |
40 ℃ | 1.60% | 3.55% | 1.47% | 2.63% | 1.43% | 1.90% | 1.04% | 1.70% | 0.60% | 1.10% | 0.23% | 0.59% |
1 | LIU Z, DANG X J, JING B Q, et al. A novel model-based state of charge estimation for lithium-ion battery using adaptive robust iterative cubature Kalman filter[J]. Electric Power Systems Research, 2019, 177: 105951. DOI: 10.1016/j.epsr.2019.105951. |
2 | CHEN K, ZHOU S Y, LIU K, et al. State of charge estimation for lithium-ion battery based on whale optimization algorithm and multi-kernel relevance vector machine[J]. 2023, 158(10): 104110. DOI: 10.1063/5.0139376. |
3 | ZHOU W L, ZHENG Y P, PAN Z J, et al. Review on the battery model and SOC estimation method[J]. Processes, 2021, 9(9): 1685. DOI: 10.3390/pr9091685. |
4 | LEONORI S, BALDINI L, RIZZI A, et al. A physically inspired equivalent neural network circuit model for SoC estimation of electrochemical cells[J]. Energies, 2021, 14(21): 7386. DOI: 10.3390/en14217386. |
5 | BUCHICCHIO E, DE ANGELIS A, SANTONI F, et al. Battery SOC estimation from EIS data based on machine learning and equivalent circuit model[J]. Energy, 2023, 283: 128461. DOI: 10.1016/j.energy.2023.128461. |
6 | 李伟, 刘伟嵬, 邓业林. 基于扩展卡尔曼滤波的锂离子电池荷电状态估计[J]. 中国机械工程, 2020, 31(3): 321-327, 343. DOI: 10.3969/j.issn.1004-132X.2020.03.010. |
LI W, LIU W W, DENG Y L. SOC estimation for lithium-ion batteries based on EKF[J]. China Mechanical Engineering, 2020, 31(3): 321-327, 343. DOI: 10.3969/j.issn.1004-132X.2020.03.010. | |
7 | HIDALGO-REYES J I, GÓMEZ-AGUILAR J F, ALVARADO-MARTÍNEZ V M, et al. Battery state-of-charge estimation using fractional extended Kalman filter with Mittag-Leffler memory[J]. Alexandria Engineering Journal, 2020, 59(4): 1919-1929. DOI: 10.1016/j.aej.2019.12.006. |
8 | 安治国, 田茂飞, 赵琳, 等. 基于自适应无迹卡尔曼滤波的锂电池SOC估计[J]. 储能科学与技术, 2019, 8(5): 856-861. DOI: 10.12028/j.issn.2095-4239.2019.0113. |
AN Z G, TIAN M F, ZHAO L, et al. SOC estimation of lithium battery based on adaptive untracked Kalman filter[J]. Energy Storage Science and Technology, 2019, 8(5): 856-861. DOI: 10.12028/j.issn.2095-4239.2019.0113. | |
9 | ZHENG L F, ZHU J G, WANG G X, et al. Differential voltage analysis based state of charge estimation methods for lithium-ion batteries using extended Kalman filter and particle filter[J]. Energy, 2018, 158: 1028-1037. DOI: 10.1016/j.energy.2018.06.113. |
10 | WANG S L, JIA X Y, TAKYI-ANINAKWA P, et al. Review—Optimized particle filtering strategies for high-accuracy state of charge estimation of LIBs[J]. Journal of the Electrochemical Society, 2023, 170(5): 050514. DOI: 10.1149/1945-7111/acd148. |
11 | WANG K, FENG X, PANG J B, et al. State of charge (SOC) estimation of lithium-ion battery based on adaptive square root unscented Kalman filter[J]. International Journal of Electrochemical Science, 2020, 15(9): 9499-9516. DOI: 10.20964/2020.09.84. |
12 | GUO F, HU G D, XIANG S, et al. A multi-scale parameter adaptive method for state of charge and parameter estimation of lithium-ion batteries using dual Kalman filters[J]. Energy, 2019, 178: 79-88. DOI: 10.1016/j.energy.2019.04.126. |
13 | MENG J H, STROE D I, RICCO M, et al. A simplified model-based state-of-charge estimation approach for lithium-ion battery with dynamic linear model[J]. IEEE Transactions on Industrial Electronics, 2019, 66(10): 7717-7727. DOI: 10.1109/TIE.2018. 2880668. |
14 | 陈德海, 王超, 朱正坤, 等. 交互多模型无迹卡尔曼滤波算法预测锂电池SOC[J]. 储能科学与技术, 2020, 9(1): 257-265. DOI: 10.19799/j.cnki.2095-4239.2019.0207. |
CHEN D H, WANG C, ZHU Z K, et al. Lithium battery state-of-charge estimation based on interactive multimodel unscented Kalman filter Algorithm[J]. Energy Storage Science and Technology, 2020, 9(1): 257-265. DOI: 10.19799/j.cnki.2095-4239.2019.0207. | |
15 | HE H W, XIONG R, FAN J X. Evaluation of lithium-ion battery equivalent circuit models for state of charge estimation by an experimental approach[J]. Energies, 2011, 4(4): 582-598. DOI: 10.3390/en4040582. |
16 | LIANG Y W, WANG S L, FAN Y C, et al. An error covariance correction-adaptive extended Kalman filter based on piecewise forgetting factor recursive least squares method for the state-of-charge estimation of lithium-ion batteries[J]. Journal of Energy Storage, 2023, 68: 107629. DOI: 10.1016/j.est.2023.107629. |
17 | FENG S, LI X G, ZHANG S, et al. A review: State estimation based on hybrid models of Kalman filter and neural network[J]. Systems Science & Control Engineering, 2023, 11(1). DOI: 10.1080/21642583.2023.2173682. |
18 | CHEN Z G, ZHOU J X, ZHOU F, et al. State-of-charge estimation of lithium-ion batteries based on improved H infinity filter algorithm and its novel equalization method[J]. Journal of Cleaner Production, 2021, 290: 125180. DOI: 10.1016/j.jclepro. 2020.125180. |
19 | DING F, WANG X H, MAO L, et al. Joint state and multi-innovation parameter estimation for time-delay linear systems and its convergence based on the Kalman filtering[J]. Digital Signal Processing, 2017, 62: 211-223. DOI: 10.1016/j.dsp. 2016.11.010. |
[1] | Zhonglin SUN, Jiabo LI, Di TIAN, Zhixuan WANG, Xiaojing XING. Useful life prediction for lithium-ion batteries based on COA-LSTM and VMD [J]. Energy Storage Science and Technology, 2024, 13(9): 3254-3265. |
[2] | Jizhong LU, Simin PENG, Xiaoyu LI. State-of-health estimation of lithium-ion batteries based on multifeature analysis and LSTM-XGBoost model [J]. Energy Storage Science and Technology, 2024, 13(9): 2972-2982. |
[3] | Siyuan SHEN, Yakun LIU, Donghuang LUO, Yujun LI, Wei HAO. Transient overvoltage protection design and circuit development for energy storage lithium-ion battery modules [J]. Energy Storage Science and Technology, 2024, 13(9): 3277-3286. |
[4] | Yuan CHEN, Siyuan ZHANG, Yujing CAI, Xiaohe HUANG, Yanzhong LIU. State-of-health estimation of lithium batteries based on polynomial feature extension of the CNN-transformer model [J]. Energy Storage Science and Technology, 2024, 13(9): 2995-3005. |
[5] | Ruihe XING, Suting WENG, Yejing LI, Jiayi ZHANG, Hao ZHANG, Xuefeng WANG. AI-assisted battery material characterization and data analysis [J]. Energy Storage Science and Technology, 2024, 13(9): 2839-2863. |
[6] | Hongsheng GUAN, Cheng QIAN, Bo SUN, Yi REN. Predicting capacity degradation trajectory for lithium-ion batteries under limited data conditions [J]. Energy Storage Science and Technology, 2024, 13(9): 3084-3093. |
[7] | Xue KE, Huawei HONG, Peng ZHENG, Zhicheng LI, Peixiao FAN, Jun YANG, Yuzheng GUO, Chunguang KUAI. Estimating lithium-ion battery health using automatic feature extraction and channel attention mechanisms for multi-timescale modeling [J]. Energy Storage Science and Technology, 2024, 13(9): 3059-3071. |
[8] | Chengwen TIAN, Bingxiang SUN, Xinze ZHAO, Zhicheng FU, Shichang MA, Bo ZHAO, Xubo ZHANG. Accelerated life prediction of lithium-ion batteries using data-driven approaches [J]. Energy Storage Science and Technology, 2024, 13(9): 3103-3111. |
[9] | Qingbo LI, Maohui ZHANG, Ying LUO, Taolin LYU, Jingying XIE. Lithium-ion battery state of charge estimation based on equivalent circuit model [J]. Energy Storage Science and Technology, 2024, 13(9): 3072-3083. |
[10] | Bingxiang SUN, Xin YANG, Xingzhen ZHOU, Shichang MA, Zhihao WANG, Weige ZHANG. Comparative parametric study of metaheuristics based on impedance modeling for lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(9): 2952-2962. |
[11] | Yufeng HUANG, Huanchao LIANG, Lei XU. Kalman filter optimize Transformer method for state of health prediction on lithium-ion battery [J]. Energy Storage Science and Technology, 2024, 13(8): 2791-2802. |
[12] | Zheng CHEN, Bo YANG, Zhigang ZHAO, Jiangwei SHEN, Renxin XIAO, Xuelei XIA. State of charge estimation considering lithium battery temperature and aging [J]. Energy Storage Science and Technology, 2024, 13(8): 2813-2822. |
[13] | Guohe CHEN, Peizhao LYU, Menghan LI, Zhonghao RAO. Research progress on thermal runaway propagation characteristics of lithium-ion batteries and its inhibiting strategies [J]. Energy Storage Science and Technology, 2024, 13(7): 2470-2482. |
[14] | Chengxin LIU, Ziheng LI, Zeyu CHEN, Pengxiang LI, Qingyi TAO. Characterization study on overheat-induced thermal runaway for lithium-ion battery in energy storage [J]. Energy Storage Science and Technology, 2024, 13(7): 2425-2431. |
[15] | Shijie LIAO, Ying WEI, Yunhui HUANG, Renzong HU, Henghui XU. 1,3-Difluorobenzene diluent-stabilizing electrode interface for high-performance low-temperature lithium metal batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2124-2130. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||