Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (7): 2729-2737.doi: 10.19799/j.cnki.2095-4239.2025.0304
• Special Issue on the 13th Energy Storage International Conference and Exhibition • Previous Articles Next Articles
Bin WANG1(), Jinkai LIU2,3, Xiaoxia JIANG2,3, Ning BAI2,3(
), Yuanwei LU3,4
Received:
2025-03-28
Revised:
2025-04-22
Online:
2025-07-28
Published:
2025-07-11
Contact:
Ning BAI
E-mail:wangbin03@spic.com.cn;baining@spic.com.cn
CLC Number:
Bin WANG, Jinkai LIU, Xiaoxia JIANG, Ning BAI, Yuanwei LU. Optimization of flexibile peak shaving system of coal-fired unit aided by molten salt heat storage based on economic analysis[J]. Energy Storage Science and Technology, 2025, 14(7): 2729-2737.
Table 1
Thermodynamic parameters under typical operating conditions of a 600 MW unit"
热力指标 | 数值 | |
---|---|---|
100%额定负荷 | 50%额定负荷 | |
主蒸汽流量/(t/h) | 1848.79 | 900.11 |
主蒸汽压力/MPa | 16.67 | 9.77 |
主蒸汽温度/℃ | 538.00 | 538.00 |
再热蒸汽流量/(t/h) | 1576.13 | 798.27 |
再热蒸汽压力/MPa | 3.41 | 1.75 |
再热蒸汽温度/℃ | 538.00 | 538.00 |
1号抽汽压力/MPa | 6.08 | 3.09 |
2号抽汽压力/MPa | 3.79 | 1.94 |
3号抽汽压力/MPa | 2.05 | 1.06 |
4号抽汽压力/MPa | 1.02 | 0.53 |
5号抽汽压力/MPa | 0.62 | 0.32 |
6号抽汽压力/MPa | 0.24 | 0.128 |
7号抽汽压力/MPa | 0.08 | 0.04 |
发电功率/MW | 600.18 | 300.11 |
热耗率/(kJ/kWh) | 8064.00 | 8653.00 |
Table 3
Unit operating parameters during heat storage/release process for each scheme"
方案编号 | 储热节点 | 储热调峰范围 | 释热节点 | 释热调峰范围 |
---|---|---|---|---|
1 | 主蒸汽抽汽(538.0 ℃,9.77 MPa)→ 回水(309.4 ℃,9.77 MPa) | 300.03~285.88 MW | 3号高加入口(154.8 ℃,18.23 MPa)→ 1号高加出口(232.8 ℃,18.23 MPa) | 300.03~309.17 MW |
2 | 除氧器出口(151.9 ℃,0.50 MPa)→ 低压缸入口(361.0 ℃,0.50 MPa) | 300.03~307.03 MW | ||
3 | 7号低加入口(54.0 ℃,1.72 MPa)→ 5号低加出口(131.3 ℃,1.72 MPa) | 300.03~305.16 MW |
[1] | 刘世宇, 陈俊杰. "十四五" 新能源消纳形势分析与建议[J]. 新能源科技, 2021(10): 35-37. |
LIU S Y, CHEN J J. Analysis and suggestions on the consumption situation of new energy in the 14th Five-Year Plan[J]. New Energy Technology, 2021(10): 35-37. | |
[2] | 崔杨, 张家瑞, 王铮, 等. 计及价格型需求响应的风-光-光热联合发电系统日前调度策略[J]. 中国电机工程学报, 2020, 40(10): 3103-3114. DOI: 10.13334/j.0258-8013.pcsee.191388. |
CUI Y, ZHANG J R, WANG Z, et al. Day-ahead scheduling strategy of wind-PV-CSP hybrid power generation system by considering PDR[J]. Proceedings of the CSEE, 2020, 40(10): 3103-3114. DOI: 10.13334/j.0258-8013.pcsee.191388. | |
[3] | 陈海生, 李泓, 徐玉杰, 等. 2022年中国储能技术研究进展[J]. 储能科学与技术, 2023, 12(5): 1516-1552. DOI: 10.19799/j.cnki.2095-4239.2023.0330. |
CHEN H S, LI H, XU Y J, et al. Research progress on energy storage technologies of China in 2022[J]. Energy Storage Science and Technology, 2023, 12(5): 1516-1552. DOI: 10.19799/j.cnki.2095-4239.2023.0330. | |
[4] | 张成凤, 朱轶林, 胡东子, 等. 火-储耦合系统深度调峰综合经济性分析[J]. 储能科学与技术, 2024, 13(10): 3693-3705. DOI: 10.19799/j.cnki.2095-4239.2024.0250. |
ZHANG C F, ZHU Y L, HU D Z, et al. Comprehensive economic analysis of deep peak shaving in thermal power-heat storage coupling systems[J]. Energy Storage Science and Technology, 2024, 13(10): 3693-3705. DOI: 10.19799/j.cnki.2095-4239. 2024. 0250. | |
[5] | 周科, 李银龙, 李明皓, 等. 燃煤发电-物理储热耦合技术研究进展与系统调峰能力分析[J]. 洁净煤技术, 2022, 28(3): 159-172. DOI: 10.13226/j.issn.1006-6772.CC22010501. |
ZHOU K, LI Y L, LI M H, et al. Research progress on the coupling technology of coal-fired power generation-physical thermal storage and analysis for the system peaking capacity[J]. Clean Coal Technology, 2022, 28(3): 159-172. DOI: 10.13226/j.issn. 1006-6772.CC22010501. | |
[6] | 毛翠骥, 余雄江, 徐进良, 等. 耦合熔融盐储热的火电机组灵活调峰系统关键技术研究进展[J]. 热力发电, 2023, 52(2): 10-22. DOI: 10. 19666/j.rlfd.202208183. |
MAO C J, YU X J, XU J L, et al. Research progress on key technologies of flexible peak shaving system of thermal power unit coupled with molten salt heat storage[J]. Thermal Power Generation, 2023, 52(2): 10-22. DOI: 10.19666/j.rlfd.202208183. | |
[7] | WOJCIK J D, WANG J H. Technical feasibility study of thermal energy storage integration into the conventional power plant cycle[J]. Energies, 2017, 10(2): 205. DOI: 10.3390/en10020205. |
[8] | CAO R F, LU Y, YU D R, et al. A novel approach to improving load flexibility of coal-fired power plant by integrating high temperature thermal energy storage through additional thermodynamic cycle[J]. Applied Thermal Engineering, 2020, 173: 115225. DOI: 10.1016/j.applthermaleng.2020.115225. |
[9] | WEI H J, LU Y W, YANG Y C, et al. Research on influence of steam extraction parameters and operation load on operational flexibility of coal-fired power plant[J]. Applied Thermal Engineering, 2021, 195: 117226. DOI: 10.1016/j.applthermaleng. 2021.117226. |
[10] | WEI H J, LU Y W, YANG Y C, et al. Flexible operation mode of coal-fired power unit coupling with heat storage of extracted reheat steam[J]. Journal of Thermal Science, 2022, 31(2): 436-447. DOI: 10.1007/s11630-022-1583-z. |
[11] | 魏海姣, 鹿院卫, 吴玉庭, 等. 燃煤机组灵活性运行系统分析[J]. 北京工业大学学报, 2022, 48(12): 1307-1318. |
WEI H J, LU Y W, WU Y T, et al. Exergy analysis of flexible operation of coal-fired power plant[J]. Journal of Beijing University of Technology, 2022, 48(12): 1307-1318. | |
[12] | 庞力平, 张世刚, 段立强. 高温熔盐储能提高二次再热机组灵活性研究[J]. 中国电机工程学报, 2021, 41(8): 2682-2691. DOI: 10.13334/j.0258-8013.pcsee.200771. |
PANG L P, ZHANG S G, DUAN L Q. Flexibility improvement study on the double reheat power generation unit with a high temperature molten salt thermal energy storage[J]. Proceedings of the CSEE, 2021, 41(8): 2682-2691. DOI: 10.13334/j.0258-8013.pcsee.200771. | |
[13] | 冀帅宇, 段立强, 王远慧, 等. 典型燃煤机组灵活调峰策略及性能研究[J]. 热力发电, 2023, 52(9): 94-103. DOI: 10.19666/j.rlfd. 202305092. |
JI S Y, DUAN L Q, WANG Y H, et al. Research on flexible peak load regulation strategy and performance of typical coal-fired units[J]. Thermal Power Generation, 2023, 52(9): 94-103. DOI: 10.19666/j.rlfd.202305092. | |
[14] | 张可臻, 刘明, 赵永亮, 等. 燃煤机组集成再热蒸汽熔盐储热系统的运行灵活性与热力性能分析[J]. 工程热物理学报, 2023, 44(9): 2331-2339. |
ZHANG K Z, LIU M, ZHAO Y L, et al. Operation flexibility and thermal performance analysis of integrated molten salt heat storage system extracting heat from the reheat steam for coal-fired power plants[J]. Journal of Engineering Thermophysics, 2023, 44(9): 2331-2339. | |
[15] | 张猛, 刘鑫屏. 350 MW供热机组低压缸切除改造灵活性提升分析[J]. 华北电力大学学报(自然科学版), 2019, 46(3): 73-79. DOI: 10. 3969/j.ISSN.1007-2691.2019.03.10. |
ZHANG M, LIU X P. Flexibility improvement in heating units through low-pressure cylinder excision of 350 MW heating unit[J]. Journal of North China Electric Power University (Natural Science Edition), 2019, 46(3): 73-79. DOI: 10.3969/j.ISSN.1007-2691.2019.03.10. | |
[16] | 林军, 李军. 火电厂直热式电锅炉灵活性改造实践[J]. 吉林电力, 2017, 45(5): 11-14. DOI: 10.16109/j.cnki.jldl.2017.05.004. |
LIN J, LI J. Practice of flexible reformation of direct thermal electric boiler in thermal power plant[J]. Jilin Electric Power, 2017, 45(5): 11-14. DOI: 10.16109/j.cnki.jldl.2017.05.004. | |
[17] | 章艳, 吕泉, 李杨, 等. 四种热电厂电热解耦改造方案的运行灵活性剖析[J]. 电力系统自动化, 2020, 44(2): 164-172. DOI: 10.7500/AEPS20190509006. |
ZHANG Y, LYU Q, LI Y, et al. Analysis on operation flexibility of combined heat and power plant with four improved power-heat decoupling schemes[J]. Automation of Electric Power Systems, 2020, 44(2): 164-172. DOI: 10.7500/AEPS20190509006. | |
[18] | 王玉宏, 闫保柱, 杨殿臣, 等. 甘肃某电厂电蓄热调峰灵活性技术改造设计[J]. 电力勘测设计, 2020(5): 39-44, 82. DOI: 10.13500/j.dlkcsj.issn1671-9913.2020.05.008. |
WANG Y H, YAN B Z, YANG D C, et al. Technical transformation of peaking flexibility of electric heat storage in a power plant in Gansu Province[J]. Electric Power Survey & Design, 2020(5): 39-44, 82. DOI: 10.13500/j.dlkcsj.issn1671-9913.2020.05.008. | |
[19] | 徐正, 霍玉龙. 高背压供热技术的技术风险及经济效益分析[J]. 黑龙江电力, 2020, 42(6): 527-532, 559. DOI: 10.13625/j.cnki.hljep. 2020.06.012. |
XU Z, HUO Y L. Analysis of technical risk and economic benefit about high back pressure heating technology[J]. Heilongjiang Electric Power, 2020, 42(6): 527-532, 559. DOI: 10.13625/j.cnki.hljep.2020.06.012. | |
[20] | 魏海姣. 基于储热的燃煤机组深度调峰系统构建及其规模化消纳风力发电模式研究[D]. 北京: 北京工业大学, 2022. DOI: 10.26935/d.cnki.gbjgu.2022.000050. |
WEI H J. Research on deep peak shaving system establishment of coal-fired power unit integrated with thermal energy storage and its application mode for large-scale wind power consumption[D]. Beijing: Beijing University of Technology, 2022. DOI: 10. 26935/d.cnki.gbjgu.2022.000050. | |
[21] | 杨绪青. 耦合电加热的压缩空气储能系统集成研究与性能分析[D]. 青岛: 青岛科技大学, 2022. DOI: 10.27264/d.cnki.gqdhc. 2022. 001139. |
YANG X Q. Integration research and performance analysis of compressed ari energy storage system coupled with electric heating[D]. Qingdao: Qingdao University of Science & Technology, 2022. DOI: 10.27264/d.cnki.gqdhc.2022.001139. | |
[22] | 陈建生. 太阳能-sCO2循环发电系统集成及热-经济-环境分析与优化[D]. 广州: 广东工业大学, 2021. DOI: 10.27029/d.cnki.ggdgu. 2021.001473. |
CHEN J S. SPT-sCO2 cycle power generation system thermal-economy-environment analysis and optimization[D]. Guangzhou: Guangdong University of Technology, 2021. DOI: 10.27029/d.cnki.ggdgu.2021.001473. |
[1] | Hao XIONG, Danzhen GU, Changsheng CHENG, Wenhao SHI. Power-system scheduling that takes into account electric-vehicle energy storage and its flexibility analysis [J]. Energy Storage Science and Technology, 2025, 14(6): 2416-2430. |
[2] | Boxu YU, Rui HAN, Qian LIU, Zhirong LIAO, Xing JU, Chao XU. Thermodynamic performance of a flexible retrofit Carnot battery energy storage system in a coupled thermal power plant [J]. Energy Storage Science and Technology, 2025, 14(4): 1461-1470. |
[3] | Dong MO, Qiuwen LI, Yufu LU. Wind solar thermal storage collaborative low-carbon economic dispatch that adapts to wind solar volatility and dynamic peak shaving capacity of energy storage [J]. Energy Storage Science and Technology, 2025, 14(4): 1701-1708. |
[4] | Yuelin CHEN, Hongzhong MA, Muyu ZHU, Wenjing XUAN, Sihan WANG. Research on the liquid cooling technology of a lithium iron phosphate battery pack under a peak load regulation in a power grid [J]. Energy Storage Science and Technology, 2024, 13(8): 2704-2712. |
[5] | Shuai DU, Liming JIA, Zhendi LI, Zhenxing MA. Optimization configuration of distribution network operation with “photovoltaic energy storage” coupling participation in peak shaving [J]. Energy Storage Science and Technology, 2024, 13(5): 1741-1743. |
[6] | Chengfeng ZHANG, Yilin ZHU, Dongzi HU, Zhengyang FU, Yujie XU, Guoqing SHEN, Liang WANG, Haisheng CHEN. Comprehensive economic analysis of deep peak shaving in thermal power-heat storage coupling systems [J]. Energy Storage Science and Technology, 2024, 13(10): 3693-3705. |
[7] | Ziou YUAN, Feng WANG, Xingzhao QI, Qi ZHANG, Rui MA. Performance analysis of mixed sodium waste salts applied in a thermal storage field [J]. Energy Storage Science and Technology, 2023, 12(12): 3616-3626. |
[8] | Hui WANG, Jun LI, Peiwang ZHU, Jian WANG, Chunlin ZHANG. Hundred-megawatt molten salt heat storage system for deep peak shaving of thermal power plant [J]. Energy Storage Science and Technology, 2021, 10(5): 1760-1767. |
[9] | Yingying WANG, Dekun FU, Mingbiao CHEN, Wenji SONG, Ziping FENG. Economy of ice source heat pump clean heating system in cold winter zone [J]. Energy Storage Science and Technology, 2021, 10(4): 1380-1387. |
[10] | Jie YANG, Fan GUO, Zijian CAO. Cost and benefit analysis of EV energy storage through V2G [J]. Energy Storage Science and Technology, 2020, 9(S1): 45-51. |
[11] | ZHANG Yongle, ZHANG Xiaoming, WU Yuting, LU Yuanwei, MA Chongfang. Analysis of thermal performance of electromagnetic induction based molten salt heating system [J]. Energy Storage Science and Technology, 2019, 8(2): 319-325. |
[12] | LIN Liqian, MI Zengqiang, JIA Yulong, FAN Hui, DU Peng. Distributed energy storage aggregation for power grid peak shaving in a power market [J]. Energy Storage Science and Technology, 2019, 8(2): 276-283. |
[13] | WANG Dajie, CHEN Ying, TANG Yingwei, LI Shengfei, ZHAO Sifeng. Application and research of flywheel energy storage system in electrified railway [J]. Energy Storage Science and Technology, 2018, 7(5): 853-860. |
[14] | LIU Bing1, ZHANG Jing2, LI Daixian2, NING Na2. Energy storage for peak shaving and frequency regulation in the front of meter:Progress and prospect [J]. Energy Storage Science and Technology, 2016, 5(6): 909-914. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||