Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (7): 2714-2728.doi: 10.19799/j.cnki.2095-4239.2025.0084
• Special Issue on the 13th Energy Storage International Conference and Exhibition • Previous Articles Next Articles
Wenrui WANG1,2(), Jiahao HAO1,2, Pingyang Zheng1,2, Yunkai YUE1,3, Junling YANG1(
), Zhentao ZHANG1,2,3
Received:
2025-01-23
Revised:
2025-03-12
Online:
2025-07-28
Published:
2025-07-11
Contact:
Junling YANG
E-mail:wangwenrui23@mails.ucas.ac.cn;yangjl@mail.ipc.ac.cn
CLC Number:
Wenrui WANG, Jiahao HAO, Pingyang Zheng, Yunkai YUE, Junling YANG, Zhentao ZHANG. Design and thermoeconomic assessments of CO2 Carnot battery employing sensible heat storage at high temperatures[J]. Energy Storage Science and Technology, 2025, 14(7): 2714-2728.
Table 13
Summary of research on Carnot batteries with different cycles"
循环类型 | 系统特点 | 工质 | 往返效率 | 经济成本 |
---|---|---|---|---|
布雷顿循环系统 | 采用规则耐火砖,以填充床形式蓄热[ | 氩气 | 52%~72% | ECC=9~11 $/kWh |
采用不规则破碎玄武岩,以填充床形式蓄热[ | 空气 | 约45% | ECC=13 $/kWh | |
采用玄武岩,以填充床形式蓄热[ | 氩气和氦气 | 约80% | LCOE=0.4 $/kWh | |
采用熔盐,以双罐式蓄热[ | 超临界CO2 | 60%~78% | 未进行经济性分析 | |
朗肯循环系统 | 采用常压水以储罐形式蓄热[ | CO2 | 48%~64% | TCC=27~38 M$ |
采用相变材料,以填充床形式蓄热[ | CO2 | 43%~56% | LCOE=0.32~0.5 $/kWh | |
采用常压水/导热油,以储罐形式蓄热[ | CO2+有机工质 | 58% | 未进行经济性分析 | |
采用加压水/相变材料,以储罐形式蓄热[ | 有机工质 | 60%~110% | 未进行经济性分析 |
[1] | LI F Y, YU Y P, SHU Y, et al. Study on characteristics of photovoltaic and photothermal coupling compressed air energy storage system[J]. Process Safety and Environmental Protection, 2023, 178: 147-155. DOI: 10.1016/j.psep.2023.08.033. |
[2] | 陈海生, 刘畅, 徐玉杰, 等. 储能在碳达峰碳中和目标下的战略地位和作用[J]. 储能科学与技术, 2021, 10(5): 1477-1485. DOI: 10. 19799/j.cnki.2095-4239.2021.0389. |
CHEN H S, LIU C, XU Y J, et al. The strategic position and role of energy storage under the goal of carbon peak and carbon neutrality[J]. Energy Storage Science and Technology, 2021, 10(5): 1477-1485. DOI: 10.19799/j.cnki.2095-4239.2021.0389. | |
[3] | 陈海生, 李泓, 徐玉杰, 等. 2023年中国储能技术研究进展[J]. 储能科学与技术, 2024, 13(5): 1359-1397. DOI: 10.19799/j.cnki.2095-4239.2024.0441. |
CHEN H S, LI H, XU Y J, et al. Research progress on energy storage technologies of China in 2023[J]. Energy Storage Science and Technology, 2024, 13(5): 1359-1397. DOI: 10.19799/j.cnki.2095-4239.2024.0441. | |
[4] | LIANG T, VECCHI A, KNOBLOCH K, et al. Key components for Carnot battery: Technology review, technical barriers and selection criteria[J]. Renewable and Sustainable Energy Reviews, 2022, 163: 112478. DOI: 10.1016/j.rser.2022.112478. |
[5] | DESRUES T, RUER J, MARTY P, et al. A thermal energy storage process for large scale electric applications[J]. Applied Thermal Engineering, 2010, 30(5): 425-432. DOI: 10.1016/j.applthermaleng. 2009.10.002. |
[6] | GUO J C, CAI L, CHEN J C, et al. Performance evaluation and parametric choice criteria of a Brayton pumped thermal electricity storage system[J]. Energy, 2016, 113: 693-701. DOI: 10.1016/j.energy.2016.07.080. |
[7] | MCTIGUE J D, WHITE A J, MARKIDES C N. Parametric studies and optimisation of pumped thermal electricity storage[J]. Applied Energy, 2015, 137: 800-811. DOI: 10.1016/j.apenergy.2014. 08.039. |
[8] | WHITE A J. Loss analysis of thermal reservoirs for electrical energy storage schemes[J]. Applied Energy, 2011, 88(11): 4150-4159. DOI: 10.1016/j.apenergy.2011.04.030. |
[9] | 张涵, 王亮, 林曦鹏, 等. 基于逆/正布雷顿循环的热泵储电系统性能[J]. 储能科学与技术, 2021, 10(5): 1796-1805. DOI: 10.19799/j.cnki.2095-4239.2021.0330. |
ZHANG H, WANG L, LIN X P, et al. Performance of pumped thermal electricity storage system based on reverse/forward Brayton cycle[J]. Energy Storage Science and Technology, 2021, 10(5): 1796-1805. DOI: 10.19799/j.cnki.2095-4239.2021.0330. | |
[10] | NI F, CARAM H S. Analysis of pumped heat electricity storage process using exponential matrix solutions[J]. Applied Thermal Engineering, 2015, 84: 34-44. DOI: 10.1016/j.applthermaleng. 2015.02.046. |
[11] | STEINMANN W D, JOCKENHÖFER H, BAUER D. Thermodynamic analysis of high-temperature Carnot battery concepts[J]. Energy Technology, 2020, 8(3): 1900895. DOI: 10.1002/ente.201900895. |
[12] | DUMONT O, FRATE G F, PILLAI A, et al. Carnot battery technology: A state-of-the-art review[J]. Journal of Energy Storage, 2020, 32: 101756. DOI: 10.1016/j.est.2020.101756. |
[13] | VECCHI A, KNOBLOCH K, LIANG T, et al. Carnot Battery development: A review on system performance, applications and commercial state-of-the-art[J]. Journal of Energy Storage, 2022, 55: 105782. DOI: 10.1016/j.est.2022.105782. |
[14] | ZHOU T, SHI L F, SUN X C, et al. Performance enhancement of thermal-integrated Carnot battery through zeotropic mixtures[J]. Energy, 2024, 311: 133328. DOI: 10.1016/j.energy.2024.133328. |
[15] | LI Y C, HU P, NI H, et al. Performance analysis and optimisation of waste heat recovery system based on zeotropic working fluid[J]. Applied Thermal Engineering, 2024, 253: 123799. DOI: 10.1016/j.applthermaleng.2024.123799. |
[16] | MERCANGÖZ M, HEMRLE J, KAUFMANN L, et al. Electrothermal energy storage with transcritical CO2 cycles[J]. Energy, 2012, 45(1): 407-415. DOI: 10.1016/j.energy.2012. 03.013. |
[17] | KIM Y M, SHIN D G, LEE S Y, et al. Isothermal transcritical CO2 cycles with TES (thermal energy storage) for electricity storage[J]. Energy, 2013, 49: 484-501. DOI: 10.1016/j.energy.2012. 09.057. |
[18] | WANG G B, ZHANG X R. Thermodynamic analysis of a novel pumped thermal energy storage system utilizing ambient thermal energy and LNG cold energy[J]. Energy Conversion and Management, 2017, 148: 1248-1264. DOI: 10.1016/j.enconman. 2017.06.044. |
[19] | 谭鋆, 丁若晨, 周晓宇, 等. 液冷数据中心余热驱动的"热泵-跨临界CO2发电"卡诺电池热力性能分析 [J]. 储能科学与技术, 2025,14(4): 1471-1480. DOI:10.19799/j.cnki.2095-4239.2024.0934. |
TAN Y, DING R, ZHOU X, et al. Thermal performance analysis of "heat pump-transcritical CO2 power generation" Carnot battery driven by waste heat in liquid-cooled data centers[J]. Energy Storage Science and Technology 2025, 14(4): 1471-1480. DOI:10.19799/j.cnki.2095-4239.2024.0934. | |
[20] | WANG K, SHI X P, HE Q. Thermodynamic analysis of novel carbon dioxide pumped-thermal energy storage system[J]. Applied Thermal Engineering, 2024, 255: 123969. DOI: 10.1016/j.applthermaleng.2024.123969. |
[21] | 郝佳豪, 越云凯, 张家俊, 等. 二氧化碳储能技术研究现状与发展前景[J]. 储能科学与技术, 2022, 11(10): 3285-3296. DOI: 10.19799/j.cnki.2095-4239.2022.0199. |
HAO J H, YUE Y K, ZHANG J J, et al. Research status and development prospect of carbon dioxide energy-storage technology[J]. Energy Storage Science and Technology, 2022, 11(10): 3285-3296. DOI: 10.19799/j.cnki.2095-4239.2022.0199. | |
[22] | ZHANG Y, SHEN X J, TIAN Z, et al. Comparative study of operating modes on a gaseous two-stage compressed carbon dioxide energy storage system through energy and exergy analysis based on dynamic simulation[J]. Energy, 2025, 316: 134521. DOI: 10.1016/j.energy.2025.134521. |
[23] | MA H L, TONG Y, WANG X, et al. Advancements and assessment of compressed carbon dioxide energy storage technologies: A comprehensive review[J]. RSC Sustainability, 2024, 2(10): 2731-2750. DOI: 10.1039/D4SU00211C. |
[24] | DUMONT O, LEMORT V. Mapping of performance of pumped thermal energy storage (Carnot battery) using waste heat recovery[J]. Energy, 2020, 211: 118963. DOI: 10.1016/j.energy. 2020.118963. |
[25] | FILALI BABA Y, AJDAD H, MERS A A L, et al. Multilevel comparison between magnetite and quartzite as thermocline energy storage materials[J]. Applied Thermal Engineering, 2019, 149: 1142-1153. DOI: 10.1016/j.applthermaleng.2018.12.002. |
[26] | WANG L, LIN X P, CHAI L, et al. Cyclic transient behavior of the Joule-Brayton based pumped heat electricity storage: Modeling and analysis[J]. Renewable and Sustainable Energy Reviews, 2019, 111: 523-534. DOI: 10.1016/j.rser.2019.03.056. |
[27] | DIETRICH A, DAMMEL F, STEPHAN P. Exergoeconomic analysis of a pumped heat electricity storage system with concrete thermal energy storage[J]. International Journal of Thermodynamics, 2016, 19(1): 43. DOI: 10.5541/ijot.5000156078. |
[28] | SALOMONE-GONZÁLEZ D, GONZÁLEZ-AYALA J, MEDINA A, et al. Pumped heat energy storage with liquid media: Thermodynamic assessment by a Brayton-like model[J]. Energy Conversion and Management, 2020, 226: 113540. DOI: 10.1016/j.enconman.2020.113540. |
[29] | LI P W, VAN LEW J, CHAN C, et al. Similarity and generalized analysis of efficiencies of thermal energy storage systems[J]. Renewable Energy, 2012, 39(1): 388-402. DOI: 10.1016/j.renene. 2011.08.032. |
[30] | ZHAO Y L, SONG J, LIU M, et al. Thermo-economic assessments of pumped-thermal electricity storage systems employing sensible heat storage materials[J]. Renewable Energy, 2022, 186: 431-456. DOI: 10.1016/j.renene.2022.01.017. |
[31] | FU H L, HE Q, SONG J T, et al. Thermodynamic of a novel solar heat storage compressed carbon dioxide energy storage system[J]. Energy Conversion and Management, 2021, 247: 114757. DOI: 10.1016/j.enconman.2021.114757. |
[32] | HADELU L M, NOORPOOR A, BOYAGHCHI F A. Assessment and multi-objective dragonfly optimization of utilizing flash tank vapor injection cycle in a new geothermal assisted-pumped thermal energy storage system based on transcritical CO2 cycle[J]. Journal of Energy Storage, 2024, 88: 111628. DOI: 10.1016/j.est.2024.111628. |
[33] | MORANDIN M, MERCANGÖZ M, HEMRLE J, et al. Thermoeconomic design optimization of a thermo-electric energy storage system based on transcritical CO2 cycles[J]. Energy, 2013, 58: 571-587. DOI: 10.1016/j.energy.2013.05.038. |
[34] | LI J Y, TARPANI R R Z, GALLEGO-SCHMID A, et al. Life cycle assessment of repurposing abandoned onshore oil and gas wells for geothermal power generation[J]. Science of The Total Environment, 2024, 907: 167843. DOI: 10.1016/j.scitotenv.2023. 167843. |
[35] | XU W P, ZHAO P, LIU A J, et al. Design and off-design performance analysis of a liquid carbon dioxide energy storage system integrated with low-grade heat source[J]. Applied Thermal Engineering, 2023, 228: 120570. DOI: 10.1016/j.applthermaleng. 2023.120570. |
[36] | 文军, 刘楠, 裴杰, 等. 储能技术全生命周期度电成本分析[J]. 热力发电, 2021, 50(8): 24-29. DOI: 10.19666/j.rlfd.202105094. |
WEN J, LIU N, PEI J, et al. Life cycle cost analysis for energy storage technology[J]. Thermal Power Generation, 2021, 50(8): 24-29. DOI: 10.19666/j.rlfd.202105094. | |
[37] | SMALLBONE A, JÜLCH V, WARDLE R, et al. Levelised cost of storage for pumped heat energy storage in comparison with other energy storage technologies[J]. Energy Conversion and Management, 2017, 152: 221-228. DOI: 10.1016/j.enconman. 2017.09.047. |
[38] | GEORGIOU S, AUNEDI M, STRBAC G, et al. On the value of liquid-air and pumped-thermal electricity storage systems in low-carbon electricity systems[J]. Energy, 2020, DOI:10.1016/j.energy.2019.116680. |
[39] | MCTIGUE J, FARRES-ANTUNEZ P, ELLINGWOOD K, et al. Pumped thermal electricity storage with supercritical CO2 Cycles and Solar heat input[C]//proceedings of the SolarPACES 2019, 2019. |
[40] | MORANDIN M, MARÉCHAL F, MERCANGÖZ M, et al. Conceptual design of a thermo-electrical energy storage system based on heat integration of thermodynamic cycles-Part A: Methodology and base case[J]. Energy, 2012, 45(1): 375-385. DOI: 10.1016/j.energy.2012.03.031. |
[41] | TAUVERON N, MACCHI E, NGUYEN D, et al. Experimental study of supercritical CO2 heat transfer in a thermo-electric energy storage based on Rankine and heat-pump cycles[J]. Energy Procedia, 2017, 129: 939-946. DOI: 10.1016/j.egypro. 2017.09.121. |
[42] | FRATE G F, ANTONELLI M, DESIDERI U. A novel pumped thermal electricity storage (PTES) system with thermal integration[J]. Applied Thermal Engineering, 2017, 121: 1051-1058. DOI: 10.1016/j.applthermaleng.2017.04.127. |
[1] | Yuan LI, Mingzhi ZHAO, Yujie XU, Jie CAI. Variable-operating-condition operational characteristics of liquid carbon dioxide energy storage systems [J]. Energy Storage Science and Technology, 2025, 14(7): 2761-2771. |
[2] | Xun CHEN, Dundun WANG, Xiao HU, Minxia LI, Yunkai YUE. Enhanced Carnot battery system with integrated dual pressure condensation/evaporation technologies [J]. Energy Storage Science and Technology, 2025, 14(5): 2035-2042. |
[3] | Yun TAN, Ruochen DING, Xiaoyu ZHOU, Xinxing LIN, Wen SU, Bo XU, Hong WU. Thermal performance analysis of a Carnot battery driven by waste heat from a liquid-cooled data center coupled with a heat pump and a transcritical CO2 power cycle [J]. Energy Storage Science and Technology, 2025, 14(4): 1471-1480. |
[4] | Boxu YU, Rui HAN, Qian LIU, Zhirong LIAO, Xing JU, Chao XU. Thermodynamic performance of a flexible retrofit Carnot battery energy storage system in a coupled thermal power plant [J]. Energy Storage Science and Technology, 2025, 14(4): 1461-1470. |
[5] | Daibing SHEN, Jiahao HAO, Yanchang SONG, Junling YANG, Zhentao ZHANG, Yunkai YUE. Centripetal turbine design and structural parameter optimization for hundred-kilowatt-class carbon dioxide energy storage system [J]. Energy Storage Science and Technology, 2025, 14(3): 1270-1285. |
[6] | Lei WANG, Ruitao YAN, Fan ZHANG, Na YAN, Fen YUE, Xu FU, Mengchen LIU, Yunzhang YANG. Economic analysis of independent energy-storage project participation based on the optimization model of in-spot power market and primary frequency regulation markets [J]. Energy Storage Science and Technology, 2025, 14(2): 834-845. |
[7] | Qingshan WANG, Yan LI, Qun ZHANG, Decheng WANG. A comparative analysis for various scaled mechanical energy storage technologies applied to power systems with a high share of renewable energy sources [J]. Energy Storage Science and Technology, 2025, 14(2): 854-867. |
[8] | Qili LIN, Zhen CHEN, Xiaohu WANG, Hongxun QI, Wei WANG. Economic analysis of large-scale hydrogen energy storage based on the “electric-hydrogen-electric” process [J]. Energy Storage Science and Technology, 2024, 13(6): 2068-2077. |
[9] | Tao ZHANG, Jiakai LIU, Tianle DAI, Cheng XU. Comparative analysis of thermal performance of electrothermal energy storage and liquid energy storage based on carbon dioxide [J]. Energy Storage Science and Technology, 2024, 13(5): 1554-1563. |
[10] | Liugan ZHANG, Yingchi ZHOU, Wenbing SUN, Kai YE, Longxiang CHEN. Performance of precooled CAES system using ORC-VCR to recover compression heat [J]. Energy Storage Science and Technology, 2024, 13(2): 611-622. |
[11] | Feng LI, Yuanwei LU, Yanquan WANG, Yancheng MA, Yuting WU. Effect of airfoil structure on flow and heat transfer characteristics of printed circuit heat exchanger [J]. Energy Storage Science and Technology, 2024, 13(2): 416-424. |
[12] | Yang DING, Hanwen WANG, Wenjie LU, Yuanjun LUO, Xiang LING. Characteristics and optimization study of an adiabatic Ca-looping Carnot battery system based on pumped thermal electricity storage [J]. Energy Storage Science and Technology, 2024, 13(12): 4247-4258. |
[13] | Huaning WANG, Xinjie XUE, Mianheng ZHANG, Jiahao WANG, Bin YANG, Changying ZHAO. Experimental and numerical investigation of a packed bed latent heat storage system for Carnot batteries [J]. Energy Storage Science and Technology, 2024, 13(11): 3906-3920. |
[14] | Yu ZHANG, Minxia LI, Jun LI, Libo YAN, Jiaxing ZHANG, Zhipeng WANG, Hua TIAN. Feasibility analysis of a Carnot battery energy storage system for waste heat recovery of liquid cooling units in data centers [J]. Energy Storage Science and Technology, 2024, 13(11): 3921-3929. |
[15] | Wen DU, Junlei WANG, Yunfei XU, Shilong LI, Kun WANG. Techno-economic analysis for the preparation of Li-ion battery's ternary cathode material using flame spray pyrolysis [J]. Energy Storage Science and Technology, 2024, 13(1): 345-357. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||