Energy Storage Science and Technology
Yun TAN1,4(), Ruochen DING2, Xiaoyu ZHOU3, Xinxing LIN2, Wen SU3(
), Bo XU1,4, Hong WU1
Received:
2024-10-08
Revised:
2024-10-29
Contact:
Wen SU
E-mail:tan_yun@cypc.com.cn;suwenzn@csu.edu.cn
CLC Number:
Yun TAN, Ruochen DING, Xiaoyu ZHOU, Xinxing LIN, Wen SU, Bo XU, Hong WU. Thermal performance analysis of Carnot Battery driven by waste heat from liquid-cooled data center coupled with heat pump and transcritical CO2 power cycle[J]. Energy Storage Science and Technology, doi: 10.19799/j.cnki.2095-4239.2024.0934.
Table 2
Operating parameters of the Carnot battery under design conditions"
运行参数 | 符号 | 数值 | |
---|---|---|---|
数据中心 液冷循环 | 冷却液 | / | YL-70 |
冷却液进口温度 | T1’ | 60℃ | |
冷却液出口温度 | T4’ | 50℃ | |
冷却液压力 | Pcoolant | 0.1MPa | |
热泵循环 | 工质 | / | R245fa |
蒸发器窄点温差 | PPTDevap | 5℃ | |
蒸发器出口过热度 | Tsup,evap | 10℃ | |
蒸发器压损 | ∆Pevap | 0.03MPa | |
压缩机等熵效率 | ηis,com | 85% | |
冷凝器1窄点温差 | PPTDcond1 | 5℃ | |
冷凝器1热端端差 | ∆Tht,cond1 | 10℃ | |
冷凝器1压损 | ∆Pcond1 | 0.04MPa | |
轴承机械效率 | ηm | 98% | |
电机效率 | ηg | 98% | |
储热回路 | 高温水箱温度 | Th,water | 100℃ |
高温水箱温度损失 | ∆Th,loss | 1℃ | |
加压水压力 | Pwater | 0.2MPa | |
低温水箱温度 | Tl,water | 60℃ | |
跨临界CO2 发电循环 | 净发电量 | Wnet | 100kW |
放电时间 | tdischarge | 5h | |
冷凝温度 | Tcond2 | 25℃ | |
冷凝器2出口温度 | T7 | 24℃ | |
泵出口压力 | P9 | 10MPa | |
加热器1压力损失 | ∆Ph1 | 0.05MPa | |
加热器2压力损失 | ∆Ph2 | 0.01MPa | |
泵等熵效率 | ηis,p | 90% | |
透平等熵效率 | ηis,tur | 82% | |
加热器1窄点温差 | PPTDh1 | 5℃ | |
加热器2窄点温差 | PPTDh2 | 10℃ | |
冷却水循环 | 冷却水进口温度 | T7’ | 18℃ |
冷却水出口温度 | T6’ | 22℃ | |
冷却水压力 | Pcool | 0.1MPa |
Table 4
Thermal performance parameters of the Carnot battery under design conditions"
参数 | 数值 |
---|---|
充电参数 | 304.31kW×2.43h |
放电参数 | 100kW×5h |
数据中心产热量/kW | 1297.83 |
冷凝器1放热量/kW | 1590.08 |
加热器2吸热量/kW | 753.08 |
冷凝器2放热量/kW | 1942.50 |
压缩机耗电功率/kW | 304.31 |
透平输出功率/kW | 152.96 |
泵耗电功率/kW | 52.96 |
热泵COP | 5.23 |
基于热泵供热的发电效率/% | 13.28 |
基于吸热量的发电效率/% | 4.88 |
储电效率/% | 67.64 |
加压水总质量/t | 82.81 |
Table 5
Thermal performance parameters of the Carnot battery under design conditions"
运行参数 | 热泵COP | 基于热泵供热的 发电效率/% | 基于吸热量的 发电效率/% | 往返效率/% | ||||
---|---|---|---|---|---|---|---|---|
范围 | 平均值 | 范围 | 平均值 | 范围 | 平均值 | 范围 | 平均值 | |
热泵蒸发器过热度(℃) | 4.79~5.23 | 0.09 | / | / | / | / | 62.04~67.64 | 1.12 |
高温水箱温度(℃) | 5.35~5.01 | -0.07 | 13.52~12.96 | -0.11 | 4.83~4.94 | 0.02 | 70.41~63.42 | -1.40 |
低温水箱温度(℃) | 5.23~5.04 | -0.04 | / | / | / | / | 67.64~64.95 | -0.54 |
发电循环冷凝温度(℃) | / | / | 27.18~13.28 | -0.87 | 8.17~4.88 | -0.21 | 138.44~67.64 | -4.43 |
1 | PAERSSINEN M, WAHLROOS M, MANNER J, et al. Waste heat from data centers: An investment analysis[J]. Sustainable Cities and Society, 2019, 44: 428-444. |
2 | 穆为先, 程亨达, 陈焕新, 等. 数据中心风冷冷水机组机房节能运行策略[J]. 制冷技术, 2023, 43(05): 73-80. |
MU W X, CHEN H D, CHEN H X, et al. Energy-saving Strategy of Data Center with Air-cooled Chiller[J]. Chinese Journal of Refrigeration Technology, 2023, 43(05): 73-80. | |
3 | 华信咨询设计研究院有限公司. 中国数据中心产业低碳发展实践研究[EB/OL]. [2024-06-25]. https://13115299.s21i.faiusr.com/61/1/ABUIABA9GAAgzrndoQYo9YfGhgI.pdf. |
Huaxin Consulting CO.,Ltd. Research on Low Carbon Development Practice of China's Data Center Industry[EB/OL]. [2024-06-25]. https://13115299.s21i.faiusr.com/61/1/ABUIABA9GAAgzrndoQYo9YfGhgI.pdf. | |
4 | LIANG Y R, LIN X X, SU W, et al. Preliminary design and optimization of a solar-driven combined cooling and power system for a data center[J]. Energy Conversion and Management: X, 2023, 20. |
5 | 肖彪, 常华伟, 赵树男, 等. 一种基于空气源热泵的数据中心能量回收系统研究[J]. 可再生能源, 2022, 40(04): 475-480. |
XIAO B, CHANG H W, ZHAO S N, et al. Investigation on an energy recovery system for data center based on air source heat pump[J]. Renewable Energy Resources, 2022, 40(04): 475-480. | |
6 | HUANG P, COPERTARO B, ZHANG X X, et al. A review of data centers as prosumers in district energy systems: Renewable energy integration and waste heat reuse for district heating[J]. Applied Energy, 2020, 258. |
7 | YU J W, JIANG Y Q, YAN Y Q. A simulation study on heat recovery of data center: A case study in Harbin, China[J]. Renewable Energy, 2019, 130:154-173. |
8 | 井洋, 谢晓云, 江亿. 利用数据中心余热供热的系统设计与分析[J]. 暖通空调, 2024, 54(7): 152-158. |
JING Y, XIE X Y, JIANG Y. Design and analysis of district heating systems using waste heat from data centers[J]. Heating Ventilating & Air Conditioning, 2024, 54(7): 152-158. | |
9 | 季晓莉. 生态绿色发展:发电装机越来越清洁,数据中心越来越节能[N]. 中国经济导报, 2021-07-29(001). |
JI X L. Ecological green development: Power generation installed capacity becoming cleaner and data centers becoming more energy-efficient[N]. China Economic Herald, 2021-07-29(001). | |
10 | JAHANGIR M H, MOKHTARI R, MOUSAVI S A. Performance evaluation and financial analysis of applying hybrid renewable systems in cooling unit of data centers – A case study[J]. Sustainable Energy Technologies and Assessments, 2021, 46. |
11 | LIANG Y R, LI P, XING L L, et al. Current status of thermodynamic electricity storage: principle, structure, storage device and demonstration[J]. Journal of Energy Storage, 2024, 80. |
12 | YU X H, QIAO H N, YANG B, et al. Thermal-economic and sensitivity analysis of different Rankine-based Carnot battery configurations for energy storage[J]. Energy Conversion and Management, 2023, 283. |
13 | LIANG Y R, LI P, SU W, et al. Development of green data center by configuring photovoltaic power generation and compressed air energy storage systems[J]. Energy, 2024, 292. |
14 | LI F H, XING L L, SU W, et al. An idea to construct integrated energy systems of data center by combining CO2 heat pump and compressed CO2 energy storage[J]. Journal of Energy Storage, 2023, 75. |
15 | FRATE G F, FERRARI L, DESIDERI U. Multi-criteria economic analysis of a Pumped Thermal Electricity Storage (PTES) with thermal integration. Frontiers in Energy Research, 2020, 8. |
16 | SCHARRER D, BAZAN P, PRUCKNER M, et al. Simulation and analysis of a Carnot Battery consisting of a reversible heat pump/organic Rankine cycle for a domestic application in a community with varying number of houses[J]. Energy, 2022, 261. |
17 | STAUB S, BAZAN P, BRAIMAKIS K, et al. Reversible heat pump-organic Rankine cycle systems for the storage of renewable electricity[J]. Energies, 2018, 11(6). |
18 | 张宇, 李敏霞, 李君, 等. 面向数据中心液冷装置余热回收的卡诺电池储能系统可行性分析[J]. 储能科学与技术, 2024. |
ZHANG Y, LI M X, LI J, et al. Feasibility analysis of Carnot battery energy storage system for waste heat recovery of liquid cooling units in data centers[J]. Energy Storage Science and Technology, 2024. | |
19 | LATERRE A, DUMONT O, LEMORT V, et al. Is waste heat recovery a promising avenue for the Carnot battery? Techno-economic optimisation of an electric booster-assisted Carnot battery integrated into different data centres[J]. Energy Conversion and Management, 2024. 301(1). |
20 | EBRAHIMI K, JONES G F, FLEISCHER A S. A review of data center cooling technology, operating conditions and the corresponding low-grade waste heat recovery opportunities[J]. Renewable & Sustainable Energy Reviews, 2014, 31: 622-638. |
21 | MARSHALL Z M, DUQUETTE J. A techno-economic evaluation of low global warming potential heat pump assisted organic Rankine cycle systems for data center waste heat recovery[J]. Energy, 2022, 242. |
22 | HU S Z, YANG Z, LI J, et al. Thermo-economic analysis of the pumped thermal energy storage with thermal integration in different application scenarios[J]. Energy Conversion and Management, 2021, 236. |
[1] | Hongming WANG, Bo CHENG. Optimization study of phase change heat storage air source heat pump system and solar complementary heating system [J]. Energy Storage Science and Technology, 2024, 13(6): 1980-1982. |
[2] | Jinxiang YU, Yibo WANG, Jianhong GUO, Xiaoyu ZHANG. Application of phase change heat storage in heat pump heating system based on time-of-use electricity pricing [J]. Energy Storage Science and Technology, 2024, 13(2): 669-676. |
[3] | Yanjun BO, Xinjie XUE, Huaning WANG, Changying ZHAO. System design and experimental study of Carnot battery based on latent heat/cold stores [J]. Energy Storage Science and Technology, 2023, 12(9): 2823-2832. |
[4] | Jingjiao LI, Cuilei YANG, Wei LI. Research on computer software processing technology in thermal energy storage [J]. Energy Storage Science and Technology, 2023, 12(12): 3895-3897. |
[5] | Rui HAN, Zhirong LIAO, Boxu YU, Chao XU, Xing JU. Simulation study of a molten-salt Carnot battery energy storage system for retrofitting a thermal power plant [J]. Energy Storage Science and Technology, 2023, 12(12): 3605-3615. |
[6] | Yanyan ZHANG, Yaxuan XIONG, Yahui CHEN, Ruixing QUAN, Guanggui CHENG, Yanqi ZHAO, Yulong DING. Recent progress in the investigation and application of packed-bed latent thermal energy storage systems [J]. Energy Storage Science and Technology, 2023, 12(12): 3852-3872. |
[7] | Jiangfeng LI, Shuaiqi LI, Xianzhen RUAN, Lei XU, Xiaochun ZHANG, Wenji SONG, Ziping FENG. Review of CO2 heat pump and thermal management for pure electric vehicle [J]. Energy Storage Science and Technology, 2022, 11(9): 2959-2970. |
[8] | Feiyue TAO, Huanran WANG, Ruixiong LI, Jing ZHAO, Gangqiang GE, Xin HE, Hao CHEN. Thermodynamic analysis of a combined heating and power system coupled with carbon dioxide energy storage utilizing environmental recooling [J]. Energy Storage Science and Technology, 2022, 11(5): 1492-1501. |
[9] | Dekun FU, Wenji SONG, Mingbiao CHEN, Ziping FENG. Techno-economic analysis of seasonal cold storage technology and its application in protected agriculture [J]. Energy Storage Science and Technology, 2021, 10(6): 2385-2391. |
[10] | Yingying WANG, Dekun FU, Mingbiao CHEN, Wenji SONG, Ziping FENG. Economy of ice source heat pump clean heating system in cold winter zone [J]. Energy Storage Science and Technology, 2021, 10(4): 1380-1387. |
[11] | ZHENG Xingang, DING Yulong. Recent progress in the adsorption heat pump technology [J]. Energy Storage Science and Technology, 2014, 3(5): 495-508. |
[12] | SONG Pengxiang, DING Yulong. A review on theory and application of chemical heat pump in thermal energy storage [J]. Energy Storage Science and Technology, 2014, 3(3): 227-235. |
[13] | DENG Guangyi, GUO Zuogang, CHEN Guangming. Design and thermodynamic analysis of compressed air energy storage system [J]. Energy Storage Science and Technology, 2013, 2(6): 615-619. |
[14] | ZHAO Liang, WANG Haiyang, FANG Xiangchen, WANG Gang, XU Hong. Modification of fly ash as a carrier of paraffin wax based phase change energy storage material for waste heat recovery [J]. Energy Storage Science and Technology, 2013, 2(6): 598-602. |
[15] | LI Yongliang, JIN Yi, HUANG Yun, YE Feng, WANG Xiang, LI Dacheng, WANG Caixia, DING Yulong. Potential applications of thermal energy storage in electric power generation sector (Ⅱ) [J]. Energy Storage Science and Technology, 2013, 2(2): 165-171. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||