Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (8): 2925-2931.doi: 10.19799/j.cnki.2095-4239.2025.0518
• Special Issue on Short Term High-Frequency High-Power Energy Storage • Previous Articles
Bowen LI1(), Xiankui WEN1, Qiang FAN1, Tingyun GU1, Zhengjun SHI2,3(
), Xiaoyin ZHANG2
Received:
2025-05-30
Revised:
2025-06-24
Online:
2025-08-28
Published:
2025-08-18
Contact:
Zhengjun SHI
E-mail:libowen_gz@163.com;shizj02@139.com
CLC Number:
Bowen LI, Xiankui WEN, Qiang FAN, Tingyun GU, Zhengjun SHI, Xiaoyin ZHANG. Experimental study on heat dissipation through circulation in the hollow shaft of MW-class flywheel motor rotor[J]. Energy Storage Science and Technology, 2025, 14(8): 2925-2931.
[1] | 国家统计局. 中华人民共和国2024年国民经济和社会发展统计公报[R/OL]. (2025-02-28) [2025-05-22]. https://www.stats.gov.cn/sj/zxfb/202502/t20250228_1958817.html. |
National Bureau of Statistics. Statistical communiqué on national economic and social development of the People's Republic of China (PRC) in 2024[R/OL]. (2025-02-28) [2025-05-22]. https://www.stats.gov.cn/sj/zxfb/202502/t20250228_1958817.html | |
[2] | AL-SHETWI A Q. Sustainable development of renewable energy integrated power sector: Trends, environmental impacts, and recent challenges[J]. Science of The Total Environment, 2022, 822: 153645. DOI: 10.1016/j.scitotenv.2022.153645. |
[3] | MUZAMMAL ISLAM M, YU T Y, GIANNOCCARO G, et al. Improving reliability and stability of the power systems: A comprehensive review on the role of energy storage systems to enhance flexibility[J]. IEEE Access, 2024, 12: 152738-152765. |
[4] | BAMISILE O, ZHENG Z, ADUN H, et al. Development and prospect of flywheel energy storage technology: A citespace-based visual analysis[J]. Energy Reports, 2023, 9: 494-505. DOI: 10.1016/j.egyr.2023.05.147. |
[5] | JI W M, HONG F, ZHAO Y Z, et al. Applications of flywheel energy storage system on load frequency regulation combined with various power generations: A review[J]. Renewable Energy, 2024, 223: 119975. DOI: 10.1016/j.renene.2024.119975. |
[6] | TAKARLI R, AMINI A, KHAJUEEZADEH M, et al. A comprehensive review on flywheel energy storage systems: Survey on electrical machines, power electronics converters, and control systems[J]. IEEE Access, 2023, 11: 81224-81255. |
[7] | GUPTA A, SHUKLA V. Flywheel energy wtorage market size - By application, analysis, share, growth forecast, 2025—2034[R]. USA: Global Market Insights Inc. 4 North Main Street, Selbyville, Delaware, 2025. |
[8] | 戴兴建, 魏鲲鹏, 张小章, 等. 飞轮储能技术研究五十年评述[J]. 储能科学与技术, 2018, 7(5): 765-782. DOI: 10.12028/j.issn.2095-4239. 2018.0083. |
DAI X J, WEI K P, ZHANG X Z, et al. A review on flywheel energy storage technology in fifty years[J]. Energy Storage Science and Technology, 2018, 7(5): 765-782. DOI: 10.12028/j.issn.2095-4239. 2018.0083. | |
[9] | MOUSAVI G S M, FARAJI F, MAJAZI A, et al. A comprehensive review of flywheel energy storage system technology[J]. Renewable and Sustainable Energy Reviews, 2017, 67: 477-490. DOI: 10.1016/j.rser.2016.09.060. |
[10] | PULLEN K R. Storing energy(Second edition)[M]. Elsevier, 2022: 207-242. |
[11] | 徐帆, 戴兴建, 王又珑, 等. 飞轮储能用永磁电机研究进展[J]. 储能科学与技术, 2024, 13(10): 3423-3441. DOI: 10.19799/j.cnki.2095-4239. 2024.0320. |
XU F, DAI X J, WANG Y L, et al. Research progress on permanent magnet machines for flywheel energy storage[J]. Energy Storage Science and Technology, 2024, 13(10): 3423-3441. DOI: 10.19799/j.cnki.2095-4239.2024.0320. | |
[12] | GRONWALD P O, KERN T A. Traction motor cooling systems: A literature review and comparative study[J]. IEEE Transactions on Transportation Electrification, 2021, 7(4): 2892-2913. DOI: 10. 1109/tte.2021.3075844. |
[13] | JIAO Y Y, DAI X J, WANG Y F, et al. Case study on flywheel energy storage systems: LPTN-based transient thermal analysis[J]. Journal of Energy Storage, 2025, 120: 116319. DOI: 10.1016/j.est.2025.116319. |
[14] | 焦渊远, 王艺斐, 戴兴建, 等. 飞轮储能系统电机转子散热研究进展[J]. 储能科学与技术, 2023, 12(10): 3131-3144. DOI: 10.19799/j.cnki. 2095-4239.2023.0261. |
JIAO Y Y, WANG Y F, DAI X J, et al. Overview of the motor-generator rotor cooling system in a flywheel energy storage system[J]. Energy Storage Science and Technology, 2023, 12(10): 3131-3144. DOI: 10.19799/j.cnki.2095-4239.2023.0261. | |
[15] | 汤勇, 孙亚隆, 郭志军, 等. 电机散热系统的研究现状与发展趋势[J]. 中国机械工程, 2021, 32(10): 1135-1150. DOI: 10.3969/j.issn. 1004- 132X.2021.10.001. |
TANG Y, SUN Y L, GUO Z J, et al. Development status and perspective trend of motor cooling systems[J]. China Mechanical Engineering, 2021, 32(10): 1135-1150. DOI: 10.3969/j.issn.1004-132X.2021.10.001. | |
[16] | HE Q, WANG J W, LI K S, et al. Thermal analysis and thermal management of high power density electric motors for aircraft electrification[J]. Applied Thermal Engineering, 2025, 260: 125006. DOI: 10.1016/j.applthermaleng.2024.125006. |
[17] | XU Z Y, XU Y M, GAI Y H, et al. Thermal management of drive motor for transportation: Analysis methods, key factors in thermal analysis, and cooling methods—a review[J]. IEEE Transactions on Transportation Electrification, 2023, 9(3): 4751-4774. DOI: 10. 1109/TTE.2023.3244907. |
[18] | 陶文铨. 传热学[M]. 5版. 北京: 高等教育出版社, 2019.TAO W Q. Heat transfer[M]. 5th ed. Beijing: Higher Education Press, 2019. |
[19] | 戴兴建, 胡东旭, 王艺斐, 等. 一种飞轮电机及其可调控泵油冷却方法: CN113258714A[P]. 2021-08-13. |
DAI X J, HU D X, WANG Y F, et al. Flywheel motor and adjustable and controllable pump oil cooling method thereof: CN113258714A[P]. 2021-08-13. | |
[20] | 戴兴建, 张剀, 徐旸. 电机转子中空轴内导热油冷却装置及飞轮储能电机: CN110198092A[P]. 2019-09-03. |
DAI X J, ZHANG K, XU Y. Heat conducting oil cooling device in hollow shaft of motor rotor and flywheel energy storage motor: CN110198092A[P]. 2019-09-03. | |
[21] | PAN W L, YAN S Y, ZHANG T G, et al. Numerical analysis of heat transfer characteristics in a flywheel energy storage system using jet cooling[J]. Applied Thermal Engineering, 2023, 224: 119881. DOI: 10.1016/j.applthermaleng.2022.119881. |
[1] | Qingxiang XU, Wei TENG, Run QIN, Shunyi SONG, Yibing LIU, Shuangyin LIANG. Energy management and control strategy for grid-connected frequency regulation flywheel energy storage systems [J]. Energy Storage Science and Technology, 2025, 14(5): 2013-2022. |
[2] | Yuanyuan JIAO, Yifei WANG, Xingjian DAI, Hualiang ZHANG, Haisheng CHEN. Overview of the motor-generator rotor cooling system in a flywheel energy storage system [J]. Energy Storage Science and Technology, 2023, 12(10): 3131-3144. |
[3] | Yongming ZHAO, Qingquan QIU, Zipan NIE, Xiaoyue LUO, Liye XIAO. Design and operating characteristics of a grid-connected motor-converting system for gravity/flywheel integrated energy storage [J]. Energy Storage Science and Technology, 2022, 11(12): 3895-3905. |
[4] | Xing ZHANG, Peng RUAN, Liuli ZHANG, Juan LI, Gangling TIAN, Dongxu HU, Baohong ZHU. Application analysis of flywheel energy storage in thermal power frequency modulation in central China [J]. Energy Storage Science and Technology, 2021, 10(5): 1694-1700. |
[5] | Xing ZHANG, Peng RUAN, Liuli ZHANG, Gangling TIAN, Baohong ZHU. Performance test of flywheel energy storage device [J]. Energy Storage Science and Technology, 2021, 10(5): 1674-1678. |
[6] | Wencan LI, Jingliang LV, Xinjian JIANG, Xinzhen ZHANG. Control method for fault ride-through of flywheel energy storage system based on multi-mode coordination [J]. Energy Storage Science and Technology, 2020, 9(6): 1905-1916. |
[7] | MENG Qiang, CHEN Mengdong, HU Xiao, WANG Le, YANG Cenyu, XU Guizhi. Numerical simulation of forced convective heat transfer of molten salt in tubes [J]. Energy Storage Science and Technology, 2019, 8(3): 544-550. |
[8] | WANG Dajie, CHEN Ying, TANG Yingwei, LI Shengfei, ZHAO Sifeng. Application and research of flywheel energy storage system in electrified railway [J]. Energy Storage Science and Technology, 2018, 7(5): 853-860. |
[9] | WANG Dajie, SUN Zhenhai, CHEN Ying, LI Shengfei, ZHAO Sifeng, WEN Haiping. Application of array 1 MW flywheel energy storage system in rail transit [J]. Energy Storage Science and Technology, 2018, 7(5): 841-846. |
[10] | LI Shusheng, FU Yongling, LIU Ping, DAI Xingjian, LI Yunlong. Research on twin trawling charging-discharging experimental method for the magnetically suspended flywheel-based dynamic UPS system [J]. Energy Storage Science and Technology, 2018, 7(5): 828-833. |
[11] | LI Shusheng, FU Yongling, LIU Ping, WANG Zhiqiang. Research on disturbance analysis and detection method for the magnetically suspended flywheel-based PMSM system [J]. Energy Storage Science and Technology, 2018, 7(5): 794-803. |
[12] | LIU Pei, WEI Kunpeng, DAI Xingjian. Analysis and experimental study on the shaft of a 1MW / 60MJ flywheel energy storage system#br# [J]. Energy Storage Science and Technology, 2017, 6(6): 1257-. |
[13] | WANG Yong1, DAI Xingjian1, LI Zhenzhi2. Structural design of rotor and shaft in FESS with 60 MJ energy capacity [J]. Energy Storage Science and Technology, 2016, 5(4): 503-508. |
[14] | HAN Yongjie, REN Zhengyi, WU Bin, LI Chong. Flywheel energy storage systems for a 1.5 MW wind generator applications [J]. Energy Storage Science and Technology, 2015, 4(2): 198-202. |
[15] | XING Xiangshang, JIANG Xinjian. Introduction to motors and controllers of flywheel energy storage systems [J]. Energy Storage Science and Technology, 2015, 4(2): 147-152. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||