Energy Storage Science and Technology ›› 2014, Vol. 3 ›› Issue (1): 21-29.doi: 10.3969/j.issn.2095-4239.2014.01.003
• Research highlight • Previous Articles Next Articles
WANG Hao, YAN Yong, XU Kaiqi, LIN Mingxiang, TANG Daichun, Dong Jinping, SUN Yang, CHEN Bin, BEN Liubin, HUANG Xueji
Received:
2013-12-16
Online:
2014-01-01
Published:
2014-01-01
CLC Number:
WANG Hao, YAN Yong, XU Kaiqi, LIN Mingxiang, TANG Daichun, Dong Jinping, SUN Yang, CHEN Bin, BEN Liubin, HUANG Xueji. Reviews of selected recent papers for lithium batteries (Oct. 1,2013 to Nov. 30,2013)[J]. Energy Storage Science and Technology, 2014, 3(1): 21-29.
[1] Liu H D,Fell C R,An K, et al . In-situ neutron diffraction study of the x Li 2 MnO 3 ·(1- x )LiMO 2 ( x =0,0.5;M = Ni,Mn,Co)layered oxide compounds during electrochemical cycling[J] . Journal of Power Sources ,2013,240:772-778. [2] Maugeri L,Iadecolaa A,Simonelli L, et al . Study of local disorder in LiMn (Cr,Ni) O 2 compounds by extended X-ray absorption fine structure measurements[J] . Journal of Power Sources ,2013,242:202-207. [3] Mohanty D,Huq A,Payzant E A, et al . Neutron diffraction and magnetic susceptibility studies on a high-voltage Li 1.2 Mn 0.55 Ni 0.15 Co 0.10 O 2 lithium ion battery cathode:Insight into the crystal structure[J]. Chemistry of Materials ,2013,25(20):4064-4070. [4] Kim G Y,Park Y J. Enhanced electrochemical and thermal properties of Sm 2 O 3 coated Li (Li 1/6 Mn 1/2 Ni 1/6 Co 1/6 ) O 2 for Li-ion batteries[J]. Journal of Electroceramics ,2013,31(1-2):199-203. [5] Xiong X H,WangZ X,Yin X, et al . A modified LiF coating process to enhance the electrochemical performance characteristics of LiNi 0.8 Co 0.1 Mn 0.1 O 2 cathode materials[J] . Materials Letters ,2013,110:4-9. [6] Kim M H,Kang Y C,Jeong S M, et al . Morphologies and electrochemical properties of 0.6Li 2 MnO 3 ·0.4LiCoO 2 composite cathode powders prepared by spray pyrolysis[J] . Materials Chemistry and Physics ,2013,142(1):438-444. [7] Cheng F Q,Xin Y L,Huang Y Y, et al . Enhanced electrochemical performances of 5V spinel LiMn 1.58 Ni 0.42 O 4 cathode materials by coating with LiAlO 2 [J] . Journal of Power Sources ,2013,239:181-188. [8] Zhu W,Liu D,Trottier J, et al . In-situ X-ray diffraction study of the phase evolution in undoped and Cr-doped Li x Mn 1.5 Ni 0.5 O 4 (0.1≤ x ≤1.0)5 V cathode materials[J] . Journal of Power Sources ,2013,242:236-243. [9] Xiao J,Yu X,Zheng J, et al . Interplay between two-phase and solid solution reactions in high voltage spinel cathode material for lithium ion batteries[J] . Journal of Power Sources ,2013,242:736-741. [10] Guo D L,Chang Z R,Li B, et al. Synthesis of high-purity LiMn 2 O 4 with enhanced electrical properties from electrolytic manganese dioxide treated by sulfuric acid-assisted hydrothermal method[J] . Journal of Solid State Electrochemistry ,2013,17(11):2849-2856. [11] Jiang J B,Du K,Cao Y B, et al . Syntheses of spherical LiMn 2 O 4 with Mn 3 O 4 and its electrochemistry performance[J] . Journal of Alloys and Compounds ,2013,577:138-142. [12] Zhao S,BaiY,Ding L H, et al . Enhanced cycling stability and thermal stability of YPO 4 -coated LiMn 2 O 4 cathode materials for lithium ion batteries[J] . Solid State Ionics ,2013,247:22-29. [13] Ni J F,Liu W,Liu J Z, et al . Investigation on a 3.2V LiCoPO 4 /Li 4 Ti 5 O 12 full battery[J] . Electrochemistry Communications ,2013,35:1-4. [14] Gutierrez A,Benedek N A,Manthiram A. Crystal-chemical guide for understanding redox energy variations of M 2+/3+ couples in polyanion cathodes for lithium-ion batteries[J] . Chemistry of Materials ,2013,25(20):4010-4016. [15] Lopez M C,Ortiz G F,Lavela P, et al . Tunable Ti 4+ /Ti 3+ redox potential in the presence of iron and calcium in NASICON-type related phosphates as electrodes for lithium batteries[J] . Chemistry of Materials ,2013,25(20):4025-4035. [16] Fan C L,HanS C,Li L F, et al . Structure and electrochemical performances of LiFe 1-2 x Ti x PO 4 /C cathode doped with high valence Ti 4+ by carbothermal reduction method[J] . Journal of Alloys and Compounds ,2013,576:18-23. [17] Zeilinger M,Baran V,Van W L, et al . Stabilizing the phase Li 15 Si 4 through lithium-aluminum substitution in Li 15- x Al x Si 4 (0.4< x <0.8)single crystal X-ray structure determination of Li 15 Si 4 and Li 14.37 Al 0.63 Si 4 [J] . Chemistry of Materials ,2013,25(20):4113-4121. [18] Becker C R,Strawhecker K E,Mcallister Q P, et al . In situ atomic force microscopy of lithiation and delithiation of silicon nanostructures for lithium ion batteries[J] . Acs Nano ,2013,7(10):9173-9182. [19] Cattaneo A S,Dupke S,Schmitz A, et al. Solid state NMR structural studies of the lithiation of nano-silicon:Effects of charging capacities, host-doping, and thermal treatment[J]. Solid State Ionics ,2013,249:41-48. [20] Lee J K,Kim B K,Yoon W Y. Irreversible behaviors and kinetics of lithiated products in SiO x anodes with inserting Li contents in Li ion batteries[J]. Japanese Journal of Applied Physics ,2013,52(10),doi:10.7567/jjap.52.10mb10. [21] Li J C,Xiao X C,Cheng Y T, et al . Atomic layered coating enabling ultrafast surface kinetics at silicon electrodes in lithium ion batteries[J]. Journal of Physical Chemistry Letters ,2013,4(20):3387-3391. [22] Stournara M E,Xiao X C,Qi Y, et al . Li segregation induces structure and strength cChanges at the amorphous Si/Cu interface[J] . Nano Letters ,2013,13(10):4759-4768. [23] Wang Y H,Liu Y P,Zheng J Y, et al . Electrochemical performances and volume variation of nano-textured silicon thin films as anodes for lithium-ion batteries[J] . Nanotechnology ,2013,24(42):doi:10.1088/0957 -4484/24/42/424011. [24] Wong D P,Tseng H P,Chen Y T, et al . A stable silicon/graphene composite using solvent exchange method as anode material for lithium ion batteries[J] . Carbon ,2013,63:397-403. [25] Choi Z,Kramer D,Monig R. Correlation of stress and structural evolution in Li 4 Ti 5 O 12 -based electrodes for lithium ion batteries[J] . Journal of Power Sources ,2013,240:245-251. [26] Fan X Y,Shi Y X,Wang J J, et al . Electrochemical synthesis and lithium storage properties of three-dimensional porous Sn-Co alloy/CNT composite[J] . Ionics ,2013,19(11):1551-1558. [27] Hori H,Shikano M,Kobayashi H, et al . Analysis of hard carbon for lithium-ion batteries by hard X-ray photoelectron spectroscopy[J] . Journal of Power Sources ,2013,242:844-847. [28] Hwang Y H,Bae E G,Sohn K S, et al . SnO 2 nanoparticles confined in a graphene framework for advanced anode materials[J] . Journal of Power Sources ,2013,240:683-690. [29] Liu H D,Huang J M,Xiang C J, et al . In situ synthesis of SnO 2 nanosheet/graphene composite as anode materials for lithium-ion batteries[J] . Journal of Materials Science : Materials in Electronics ,2013,24(10):3640-3645. [30] Wang D N,Yang J L,Li X F, et al . Layer by layer assembly of sandwiched graphene/SnO 2 nanorod/carbon nanostructures with ultrahigh lithium ion storage properties[J] . Energy & Environmental Science ,2013,6(10):2900-2906. [31] Zhang Z L,Wang Y H,Li D, et al. Mesoporous Mn 0.5 Co 0.5 Fe 2 O 4 nanospheres grown on graphene for enhanced lithium storage properties[J] . Industrial & Engineering Chemistry Research ,2013,52(42):14906-14912. [32] Momma T,Jeong M,Yokoshima T, et al . Sn-O-C composite anode for Li secondary battery synthesized by an electrodeposition technique using organic carbonate electrolyte[J] . Journal of Power Sources ,2013,242:527-532. [33] Noh K W,Dillon S J. Morphological changes in and around Sn electrodes during Li ion cycling characterized by in situ environmental TEM[J] . Scripta Materialia ,2013,69(9):658-661. [34] Yun Y S,Jin H J. Electrochemical performance of heteroatom- enriched amorphous carbon with hierarchical porous structure as anode for lithium-ion batteries[J] . Materials Letters ,2013,108:311-315. [35] He Y B,Liu M,Huang Z D, et al . Effect of solid electrolyte interface(SEI)film on cyclic performance of Li 4 Ti 5 O 12 anodes for Li ion batteries[J] . Journal of Power Sources ,2013,239:269-276. [36] Jang J Y,Park G,Lee S M, et al . Functional electrolytes enhancing electrochemical performance of Sn-Fe-P alloy as anode for lithium-ion batteries[J] . Electrochemistry Communications ,2013,35:72-75. [37] Liu Y,Liu X H,Nguyen B M, et al . Tailoring lithiation behavior by interface and bandgap engineering at the nanoscale[J] . Nano Letters ,2013,13 (10):4876-4883. [38] Chiappone A,Jeremias S,Bongiovanni R, et al. NMR study of photo-crosslinked solid polymer electrolytes:The influence of monofunctional oligoethers[J] . Journal of Polymer Science Part B : Polymer Physics ,2013,51(21):1571-1580. [39] Chiappone A,Nair J R,Gerbaldi C, et al . Nanoscale microfibrillated cellulose reinforced truly-solid polymer electrolytes for flexible,safe and sustainable lithium-based batteries[J] . Cellulose ,2013,20(5):2439-2449. [40] Amiki Y,Sagane F,Yamamoto K, et al . Electrochemical properties of an all-solid-state lithium-ion battery with an in-situ formed electrode material grown from a lithium conductive glass ceramics sheet[J] . Journal of Power Sources ,2013,241:583-588. [41] Hartmann P,Leichtweiss T,Busche M R, et al . Degradation of NASICON-type materials in contact with lithium metal:Formation of mixed conducting interphases(MCI)on solid electrolytes[J] . Journal of Physical Chemistry C ,2013,117(41):21064-21074. [42] Morimoto H,Awano H,Terashima J, et al. Preparation of lithium ion conducting solid electrolyte of NASICON-type Li 1+ x Al x Ti 2- x (PO 4 ) 3 ( x =0.3)obtained by using the mechanochemical method and its application as surface modification materials of LiCoO 2 cathode for lithium cell[J] . Journal of Power Sources ,2013,240:636-643. [43] Li Z D,Zhang Y C,Xiang H F, et al . Trimethyl phosphite as an electrolyte additive for high-voltage lithium-ion batteries using lithium-rich layered oxide cathode[J] . Journal of Power Sources ,2013,240:471-475. [44] Cui X L,Zhang H M,Li S Y, et al . Electrochemical performances of a novel high-voltage electrolyte based upon sulfolane and gamma-butyrolactone[J] . Journal of Power Sources ,2013,240:476-485. [45] Hu L B,Zhang Z C,Amine K. Fluorinated electrolytes for Li-ion battery:An FEC-based electrolyte for high voltage LiNi 0.5 Mn 1.5 O 4 / graphite couple[J] . Electrochemistry Communications ,2013,35:76-79. [46] Schmuelling G,Placke T,Kloepsch R, et al. X-ray diffraction studies of the electrochemical intercalation of bis (trifluoromethanesulfonyl) imide anions into graphite for dual-ion cells[J] . Journal of Power Sources ,2013,239:563-571. [47] Sedlarikova M,Vondrak J,Musil M, et al . Explosivity of lithium perchlorate in gel polymer electrolytes[J] . Polymer Composites ,2013,34(11):1970-1974. [48] Akita Y,Segawa M,Munakata H, et al . In-situ Fourier transform infrared spectroscopic analysis on dynamic behavior of electrolyte solution on LiFePO 4 cathode[J] . Journal of Power Sources ,2013,239:175-180. [49] Itkis D M,Semenenko D A,Kataev E Y, et al . Reactivity of carbon in lithium-oxygen battery positive electrodes[J] . Nano Letters ,2013,13(10):4697-4701. [50] Luntz A C,Viswanathan V,Voss J, et al . Tunneling and polaron charge transport through Li 2 O 2 in LiO 2 batteries[J] . Journal of Physical Chemistry Letters ,2013,4(20):3494-3499. [51] Kim D S,Park Y J. Ketjen black/Co 3 O 4 nanocomposite prepared using polydopamine pre-coating layer as a reaction agent:Effective catalyst for air electrodes of Li/air batteries[J] . Journal of Alloys and Compounds ,2013,575:319-325. [52] Li Y F,Huang Z P,Huang K, et al . Hybrid Li-air battery cathodes with sparse carbon nanotube arrays directly grown on carbon fiber papers[J] . Energy & Environmental Science ,2013,6(11):3339-3345. [53] Li Y L,Li X F,Geng D S, et al . Carbon black cathodes for lithium oxygen batteries:Influence of porosity and heteroatom-doping[J] . Carbon ,2013,64:170-177. [54] Zhai D Y,Wang H H,Yang J B, et al. Disproportionation in LiO 2 batteries based on a large surface area carbon cathode[J] . Journal of the American Chemical Society ,2013,135(41):15364-15372. [55] Catherino H A. Estimation of the heat generation rates in electrochemical cells[J] . Journal of Power Sources ,2013,239:505-512. [56] Xiao M,Choe S Y. Theoretical and experimental analysis of heat generations of a pouch type LiMn 2 O 4 /carbon high power Li-polymer battery[J] . Journal of Power Sources ,2013,241:46-55. [57] Ebner M,Marone F,Stampanoni M, et al. Visualization and quantification of electrochemical and mechanical degradation in Li ion batteries[J] . Science ,2013,342(6159):716-720. [58] Liu X S,Wang D D,Liu G, et al. Distinct charge dynamics in battery electrodes revealed by in situ and operando soft X-ray spectroscopy[J] . Nature Communications ,2013,4:doi: 10.1038/ ncomms3568. [59] Han S,Park J,Lu W, et al . Numerical study of grain boundary effect on Li + effective diffusivity and intercalation-induced stresses in Li-ion battery active materials[J] . Journal of Power Sources ,2013,240:155-167. [60] Illig J,Schmidt J P,Weiss M, et al . Understanding the impedance spectrum of 18650 LiFePO 4 -cells[J] . Journal of Power Sources ,2013,239:670-679. [61] Ansean D,Gonzalez M,Viera J C, et al . Fast charging technique for high power lithium iron phosphate batteries:A cycle life analysis[J] . Journal of Power Sources ,2013,239:9-15. [62] Kabitz S,Gerschler J B,Ecker M, et al . Cycle and calendar life study of a graphite vertical bar Li(Ni 1/3 Mn 1/3 Co 1/3 )O 2 Li-ion high energy system. Part A:Full cell characterization[J] . Journal of Power Sources ,2013,239:572-583. [63] Ponrouch A,Goni A R,Sougrati M T, et al . A new room temperature and solvent free carbon coating procedure for battery electrode materials[J] . Energy & Environmental Science ,2013,6(11):3363-3371. [64] Remmlinger J,Buchholz M,Soczka-guth T, et al . On-board state-of-health monitoring of lithium-ion batteries using linear parameter-varying models[J] . Journal of Power Sources ,2013,239:689-695. [65] Waag W,Fleischer C,Sauer D U. Adaptive on-line prediction of the available power of lithium-ion batteries[J] . Journal of Power Sources ,2013,242:548-559. [66] Lee K J,Smith K,Pesaran A, et al . Three dimensional thermal-,electrical-,and electrochemical-coupled model for cylindrical wound large format lithium-ion batteries[J] . Journal of Power Sources ,2013,241:20-32. [67] Wang D,Miao Q,Pecht M. Prognostics of lithium-ion batteries based on relevance vectors and a conditional three-parameter capacity degradation model[J] . Journal of Power Sources ,2013,239:253-264. [68] Ali M Y,Lai W J,Pan J. Computational models for simulations of lithium-ion battery cells under constrained compression tests[J] . Journal of Power Sources ,2013,242:325-340. [69] An Y H,Jiang H Q. A finite element simulation on transient large deformation and mass diffusion in electrodes for lithium ion batteries[J] . Modelling and Simulation in Materials Science and Engineering ,2013,21(7):doi: 10.1088/0965-0393/21/7/074007. [70] Araujo R B,Scheicher R H,Dealmeida J S, et al . First-principles investigation of Li ion diffusion in Li 2 FeSiO 4 [J] . Solid State Ionics ,2013,247:8-14. [71] Hajiyani H R,Preiss U,Drautz R, et al . High-throughput ab initio screening of binary solid solutions in olivine phosphates for Li-ion battery cathodes[J] . Modelling and Simulation in Materials Science and Engineering ,2013,21(7):doi: 10.1088/0965-0393/21/7/074004. [72] Ling C,Chen J J,Mizuno F. First-principles study of alkali and alkaline earth ion intercalation in iron hexacyanoferrate:The important role of ionic radius[J] . Journal of Physical Chemistry C ,2013,117(41):21158-21165. [73] Preiss U,Borukhovich E,Alemayehu N, et al . A permeation model for the electrochemical interface[J] . Modelling and Simulation in Materials Science and Engineering ,2013,21(7):doi: 10.1088/0965-0393/21/7/074006. [74] Browning K L,Baggetto L,Unocic R R, et al. Gas evolution from cathode materials:A pathway to solvent decomposition concomitant to SEI formation[J] . Journal of Power Sources ,2013,239:341-346. [75] Filso M O,Turner M J,Gibbs G V, et al. Visualizing lithium-ion migration pathways in battery materials[J] . Chemistry : A European Journal ,2013,19(46):15535-15544. |
[1] | Xiongwen XU, Yang NIE, Jian TU, Zheng XU, Jian XIE, Xinbing ZHAO. Abuse performance of pouch-type Na-ion batteries based on Prussian blue cathode [J]. Energy Storage Science and Technology, 2022, 11(7): 2030-2039. |
[2] | Yingwei PEI, Hong ZHANG, Xinghui WANG. Recent advances in the electrolytes of rechargeable zinc-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(7): 2075-2082. |
[3] | Sida HUO, Wendong XUE, Xinli LI, Yong LI. Visualization analysis of composite electrolytes for lithium battery based on CiteSpace [J]. Energy Storage Science and Technology, 2022, 11(7): 2103-2113. |
[4] | Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2022 to May 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(7): 2007-2022. |
[5] | ZHANG Yan, WANG Hai, LIU Zhaomeng, ZHANG Deliu, WANG Jiadong, LI Jianzhong, GAO Xuanwen, LUO Wenbin. Research progress of nickel-rich ternary cathode material ncm for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1693-1705. |
[6] | OU Yu, HOU Wenhui, LIU Kai. Research progress of smart safety electrolytes in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1772-1787. |
[7] | ZHOU Weidong, HUANG Qiu, XIE Xiaoxin, CHEN Kejun, LI Wei, QIU Jieshan. Research progress of polymer electrolyte for solid state lithium batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1788-1805. |
[8] | LI Yitao, SHEN Kaier, PANG Quanquan. Advance in organics enhanced sulfide-based solid-state batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1902-1918. |
[9] | ZHOU Wei, FU Dongju, LIU Weifeng, CHEN Jianjun, HU Zhao, ZENG Xierong. Research progress on recycling technology of waste lithium iron phosphate power battery [J]. Energy Storage Science and Technology, 2022, 11(6): 1854-1864. |
[10] | Ronghan QIAO, Guanjun CEN, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Feb. 1, 2022 to Mar. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(5): 1289-1304. |
[11] | Maolin FANG, Ying ZHANG, Lin QIAO, Shumin LIU, Zhongqi CAO, Huamin ZHANG, Xiangkun MA. Research progress of iron-chromium flow batteries technology [J]. Energy Storage Science and Technology, 2022, 11(5): 1358-1367. |
[12] | Chaochao WEI, Chuang YU, Zhongkai WU, Linfeng PENG, Shijie CHENG, Jia XIE. Research progress of Li3PS4 solid electrolyte [J]. Energy Storage Science and Technology, 2022, 11(5): 1368-1382. |
[13] | Honghui WANG, Zeqin WU, Deren CHU. Thermal behavior of lithium titanate based Li ion batteries under slight over-discharging condition [J]. Energy Storage Science and Technology, 2022, 11(5): 1305-1313. |
[14] | Zhicheng CHEN, Zongxu LI, Ling CAI, Yisi LIU. Development status and future prospects of flexible metal-air batteries [J]. Energy Storage Science and Technology, 2022, 11(5): 1401-1410. |
[15] | Xinyi WANG, Weijie LI, Chao HAN, Huakun LIU, Shixue DOU. Challenges and optimization strategies of the anode of aqueous zinc-ion battery [J]. Energy Storage Science and Technology, 2022, 11(4): 1211-1225. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||