Energy Storage Science and Technology ›› 2021, Vol. 10 ›› Issue (1): 104-110.doi: 10.19799/j.cnki.2095-4239.2020.0233
• Energy Storage Materials and Devices • Previous Articles Next Articles
Jin WANG1(), Jianquan WANG2(), Dianbo RUAN3, Jiao XIE1, Bin YANG3
Received:
2020-07-22
Revised:
2020-08-20
Online:
2021-01-05
Published:
2021-01-08
CLC Number:
Jin WANG, Jianquan WANG, Dianbo RUAN, Jiao XIE, Bin YANG. Preparation and electrochemical performances of Si/activated carbon composites[J]. Energy Storage Science and Technology, 2021, 10(1): 104-110.
Table 1
The specific capacity, areal capacity and coulombic efficiency of Si, PANI-C, Si/C and Si/AC under the current densty of 300 mA/g"
样品名 | 活性物质重量 | 极片面密度 | 首次放电比容量 | 首次充电比容量 | 首次面容量 | 库仑效率/% | ||
---|---|---|---|---|---|---|---|---|
/mg | /g·m-2 | /mA·h·g-1 | /mA·h·g-1 | /A·h·m-2 | 第1周 | 第10周 | 第100周 | |
Si | 2.43 | 18.32 | 2055.96 | 1288.23 | 23.60 | 62.66 | 96.11 | 97.74 |
PANI-C | 4.02 | 30.30 | 532.95 | 422.92 | 12.82 | 79.35 | 99.54 | 98.98 |
Si/C | 4.05 | 30.53 | 2541.75 | 2042.97 | 62.37 | 80.38 | 97.39 | 98.32 |
Si/AC20 | 3.85 | 29.02 | 2996.23 | 2360.11 | 68.49 | 78.77 | 98.71 | 98.83 |
Si/AC60 | 3.72 | 28.04 | 1903.15 | 1354.57 | 37.98 | 71.18 | 98.13 | 98.57 |
1 | FAN Sijia, WANG Hui, QIAN Jiangfeng, et al. Covalently bonded silicon/carbon nanocomposites as cycle-stable anodes for Li-ion batteries[J]. ACS Applied Materials & Interfaces, 2020, 882:doi:10.1016/j.jallcom.2020.153664. |
2 | ZHANG Hua, LIU Shuwu, YU Xiaofang, et al. Improving rate capacity and cycling stability of Si-anode lithium ion battery by using copper nanowire as conductive additive[J]. Journal of Alloys and Compounds, 2020, 822: doi: 10.1016/j.jallcom.2020.153664. |
3 | ZOU Xingli, JI Li, PANG Zhongya, et al. Continuous electrodeposition of silicon and germanium micro⁄nanowires from their oxides precursors in molten salt[J]. Journal of Energy Chemistry, 2020, 44: 147-153. |
4 | WU X R, YU C H, LI C C. Carbon-encapsulated gigaporous microsphere as potential Si anode-active material for lithium-ion batteries[J]. Carbon, 2020, 160: 255-264. |
5 | ZHANG Z H, DU Y J, LI H B. Engineering of a bowl-like Si@rGO architecture for an improved lithium ion battery via a synergistic effect[J]. Nanotechnology, 2020, 31 (9): doi: 10.1088/1361-6528/ab5699. |
6 | ZHAO Shuo, ZHANG Mingsheng, XIAN Xiaochao. Si@Ti2O3/C composites with enhanced high-rate performances as anode materials for lithium ion batteries[J]. Ionics, 2020, 26 (2): 617-625. |
7 | FAN Peng, LOU Shuaifeng, SUN Baoyu, et al. Improving electrochemical performance of nano-Si/N-doped carbon through tunning the microstructure from two dimensions to three dimensions[J]. Electrochimica Acta, 2020, 332: doi: 10.1016/j.electacta.2019.135507. |
8 | SANDU Georgiana, COULOMBIER Michael, KUMAR Vishank, et al. Kinked silicon nanowires-enabled interweaving electrode configuration for lithium-ion batteries[J]. Scientific Reports, 2018, 8: doi: 10.1038/s41598-018-28108-3. |
9 | SCHMERLING Marcus, FENSKE Daniela, PETERS Fabian, et al. Lithiation behavior of silicon nanowire anodes for lithium-ion batteries: Impact of functionalization and porosity[J]. Chemphyschem, 2018, 19 (1): 123-129. |
10 | CHEN Qingze, ZHU Runliang, LIU Shaohong, et al. Self-templating synthesis of silicon nanorods from natural sepiolite for high-performance lithium-ion battery anodes[J]. Journal of Materials Chemistry A, 2018, 6 (15): 6356-6362. |
11 | JIANG Yu, ZHANG Yan, YAN Xuemin, et al. A sustainable route from fly ash to silicon nanorods for high performance lithium ion batteries[J]. Chemical Engineering Journal, 2017, 330: 1052-1059. |
12 | WANG Rumeng, FENG Dongjin, CHEN Tianhua, et al. Mussel-inspired polydopamine treated Si/C electrode as high-performance anode for lithium-ion batteries[J]. Journal of Alloys and Compounds, 2020, 825: 154081. |
13 | NZABAHIMANA Joseph, LIU Zhifang, GUO Songtao, et al. Top-down synthesis of silicon/carbon composite anode materials for lithium-ion batteries: Mechanical milling and etching[J]. ChemSusChem, 2020, doi: 10.1002/cssc.201903155. |
14 | WANG Dengke, ZHOU Chunli, CAO Bin, et al. One-step synthesis of spherical Si/C composites with onion-like buffer structure as high-performance anodes for lithium-ion batteries[J]. Energy Storage Materials, 2020, 24: 312-318. |
15 | RUTTERT Mirco, SIOZIOS Vassilios, WINTER Martin, et al. Mechanochemical synthesis of Fe-Si-based anode materials for high-energy lithium ion full-cells[J]. ACS Applied Energy Materials, 2020, 3 (1): 743-758. |
16 | LIU Xuejiao, ZAI Jiantao, IQBAL Asma, et al. Glycerol-crosslinked PEDOT: PSS as bifunctional binder for Si anodes: Improved interfacial compatibility and conductivity[J]. Journal of Colloid and Interface Science, 2020, 565: 270-277. |
17 | KIM Eunsoo, RAJEEV K K, NAM Jaebin, et al. Chitosan-grafted-poly(aniline-co-anthranilic acid) as a water soluble binder to form 3D structures for Si anodes[J]. RSC Advances, 2020, 10 (13): 7643-7653. |
18 | NOELLE Roman, SCHMIEGEL Janpatrick, WINTER Martin, et al. Tailoring electrolyte additives with synergistic functional moieties for silicon negative electrode-based lithium ion batteries: A case study on lactic acid O-carboxyanhydride[J]. Chemistry of Materials, 2020, 32 (1): 173-185. |
19 | SUN Yongming, LEE Hyunwook, SEH Zhiwei, et al. High-capacity battery cathode prelithiation to offset initial lithium loss[J]. Nature Energy, 2016, 1: doi: 10.1038/nenergy.2015.8. |
20 | ZHAN Yuanjie, YU Hailong, BEN Liubin, et al. Application of Li2S to compensate for loss of active lithium in a Si-C anode[J]. Journal of Materials Chemistry A, 2018, 6 (15): 6206-6211. |
21 | PARK Yuwon, LIM Jaewoong, MOK Duckgyun, et al. Scalable solid-state synthesis of self-assembled Si nanoparticles in spherical carbons through relative miscibility for Li-ion batteries[J]. Journal of the Electrochemical Society, 2019, 166 (6): A1127-A1131. |
22 | DUNLAP N A, KIM S, JEONG J J, et al. Simple and inexpensive coal-tar-pitch derived Si-C anode composite for all-solid-state Li-ion batteries[J]. Solid State Ionics, 2018, 324: 207-217. |
23 | IDREES Muhammad, BATOOL Saima, ZHUANG Qiang, et al. Achieving carbon-rich silicon-containing ceramic anode for advanced lithium ion battery[J]. Ceramics International, 2019, 45 (8): 10572-10580. |
24 | ZHAO Shuo, ZHANG Mengmeng, WANG Zihao, et al. Enhanced high-rate performance of Li4Ti5O12 microspheresi multiwalled carbon nanotubes composites prepared by electrostatic self-assembly[J]. Electrochimica Acta, 2018, 276: 73-80. |
25 | ZHAO Shuo, YAO Cong, SUN Leiming, et al. Si/polyaniline-based porous carbon composites with an enhanced electrochemical performance as anode materials for Li-ion batteries[J]. Ionics, 2018, 24 (4): 1039-1048. |
[1] | Xianxi LIU, Anliang SUN, Chuan TIAN. Research on liquid cooling and heat dissipation of lithium-ion battery pack based on bionic wings vein channel cold plate [J]. Energy Storage Science and Technology, 2022, 11(7): 2266-2273. |
[2] | Jianxiang DENG, Jinliang ZHAO, Chengde HUANG. High energy density lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(7): 2092-2102. |
[3] | OU Yu, HOU Wenhui, LIU Kai. Research progress of smart safety electrolytes in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1772-1787. |
[4] | HAN Junwei, XIAO Jing, TAO Ying, KONG Debin, LV Wei, YANG Quanhong. Compact energy storage: Methodology with graphenes and the applications [J]. Energy Storage Science and Technology, 2022, 11(6): 1865-1873. |
[5] | Lei LI, Zhao LI, Dan JI, Huichang NIU. Overcharge induced thermal runaway behaviors of pouch-type lithium-ion batteries with LFP and NCM cathodes: the differences and reasons [J]. Energy Storage Science and Technology, 2022, 11(5): 1419-1427. |
[6] | Ce ZHANG, Siwu LI, Jia XIE. Research progress on the prelithiation technology of alloy-type anodes [J]. Energy Storage Science and Technology, 2022, 11(5): 1383-1400. |
[7] | Nan LIN, Ulrike KREWER, Jochen ZAUSCH, Konrad STEINER, Haibo LIN, Shouhua FENG. Development and application of multiphysics models for electrochemical energy storage and conversion systems [J]. Energy Storage Science and Technology, 2022, 11(4): 1149-1164. |
[8] | Hongzhang ZHU, Chuanping WU, Tiannian ZHOU, Jie DENG. Thermal runaway characteristics of LiFePO4 and ternary lithium batteries with external overheating [J]. Energy Storage Science and Technology, 2022, 11(1): 201-210. |
[9] | Lianbing LI, Sijia LI, Jie LI, Kun SUN, Zhengping WANG, Haiyue YANG, Bing GAO, Shaobo YANG. RUL prediction of lithium-ion battery based on differential voltage and Elman neural network [J]. Energy Storage Science and Technology, 2021, 10(6): 2373-2384. |
[10] | Dajin LIU, Qiang WU, Renjie HE, Chuang YU, Jia XIE, Shijie CHENG. Research progress of biopolymers in Si anodes for lithium-ion batteries [J]. Energy Storage Science and Technology, 2021, 10(6): 2156-2168. |
[11] | Mengyu TIAN, Yuanjie ZHAN, Yong YAN, Xuejie HUANG. Replenishment technology of the lithium ion battery [J]. Energy Storage Science and Technology, 2021, 10(3): 800-812. |
[12] | Ran XIONG, Shunli WANG, Chunmei YU, Lili XIA. An estimation method for lithium-ion battery SOC of special robots based on Thevenin model and improved extended Kalman [J]. Energy Storage Science and Technology, 2021, 10(2): 695-704. |
[13] | Zhendong ZHU, Huanhuan WU, Zheng ZHANG, Wen PENG, Lijuan LI. Analysis of lithium plating-stripping process in lithium-ion batteries by three-electrode measurements [J]. Energy Storage Science and Technology, 2021, 10(2): 448-453. |
[14] | Zuhao ZHANG, Xiaokai DING, Dong LUO, Jiaxiang CUI, Huixian XIE, Chenyu LIU, Zhan LIN. Challenges and solutions of lithium-rich manganese-based layered oxide cathode materials [J]. Energy Storage Science and Technology, 2021, 10(2): 408-424. |
[15] | Zheng CHEN, Guangda ZHAO, Shiquan SHEN, Xing SHU, Jiangwei SHEN. SOC estimation of aging lithium-ion battery based on a migration model [J]. Energy Storage Science and Technology, 2021, 10(1): 326-334. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||