Energy Storage Science and Technology ›› 2021, Vol. 10 ›› Issue (3): 887-895.doi: 10.19799/j.cnki.2095-4239.2021.0054
Previous Articles Next Articles
Kai WANG(), Zhaoxia HOU(), Siyao LI, Chenying QU, Yue WANG, Youjian KONG
Received:
2021-02-07
Revised:
2021-02-17
Online:
2021-05-05
Published:
2021-04-30
Contact:
Zhaoxia HOU
E-mail:523696781@qq.com;Luckyxia2007@126.com
CLC Number:
Kai WANG, Zhaoxia HOU, Siyao LI, Chenying QU, Yue WANG, Youjian KONG. Research progress of stretchable all-solid supercapacitors[J]. Energy Storage Science and Technology, 2021, 10(3): 887-895.
1 | WANG C Y, XIA K L, WANG H M, et al. Advanced carbon for flexible and wearable electronics[J]. Advanced Materials, 2019, 31(9): doi: 10.1002/adma.201801072. |
2 | SHI W, GUO Y L, LIU Y Q. When flexible organic field-effect transistors meet biomimetics: A prospective view of the internet of things[J]. Advanced Materials, 2020, 32(15): doi: 10.1002/adma.201901493. |
3 | SHI J D, LIU S, ZHANG L S, et al. Smart textile-integrated microelectronic systems for wearable applications[J]. Advanced Materials, 2020, 32(5): doi: 10.1002/adma.201901958. |
4 | MA Y J, ZHANG Y C, CAI S S, et al. Flexible hybrid electronics for digital healthcare[J]. Advanced Materials, 2020, 32(15): doi: 10.1002/adma.201902062. |
5 | LI P, ZHANG Y K, ZHENG Z J. Polymer-assisted metal deposition (PAMD) for flexible and wearable electronics: Principle, materials, printing, and devices[J]. Advanced Materials, 2019, 31(37): doi: 10.1002/adma.201902987. |
6 | CHEN D, PEI Q B. Electronic muscles and skins: A review of soft sensors and actuators[J]. Chemical Reviews, 2017, 117(17): 11239-11268. |
7 | ROOT S E, SAVAGATRUP S, PRINTZ A D, et al. Mechanical properties of organic semiconductors for stretchable, highly flexible, and mechanically robust electronics[J]. Chemical Reviews, 2017, 117(9): 6467-6499. |
8 | LIU K, YAO Y, LYU T, et al. Textile-like electrodes of seamless graphene/nanotubes for wearable and stretchable supercapacitors[J]. Journal of Power Sources, 2020, 446: 227355-227362. |
9 | HU R F, WANG Y H, ZHAO J, et al. Fabrication of stretchable multi-element composite for flexible solid-state electrochemical capacitor application[J]. Chemical Engineering Science, 2018, 361: 109-116. |
10 | TIAN B B, ZHENG J, ZHAO C X, et al. Correction: Carbonyl-based polyimide and polyquinoneimide for potassium-ion batteries[J]. Journal of Materials Chemistry A, 2019, 7(20): 9997-10003. |
11 | CHEN X, VILLA N S, ZHUANG Y F, et al. Stretchable supercapacitors as emergent energy storage units for health monitoring bioelectronics[J]. Advanced Energy Materials, 2020, 10(4): doi: 10.1002/aenm.201902769. |
12 | 邵光伟, 郭珊珊, 于瑞, 等. 可拉伸超级电容器的研究进展: 电极、电解质和器件[J]. 物理学报, 2020, 69(17): 149-168.SHAO G W, GUO S S, YU R, et al. Stretchable supercapacitors: Electrodes, electrolytes, and devices[J]. Acta Physica Sinica, 2020, 69(17): 149-168. |
13 | SHAO Y L, EL-KADY M F, SUN J Y, et al. Design and mechanisms of asymmetric supercapacitors[J]. Chemical Reviews, 2018, 118(18): 9233-9280. |
14 | WEN L, LI F, CHENG H M. Carbon nanotubes and graphene for flexible electrochemical energy storage: From materials to devices[J]. Advanced Materials, 2016, 28(22): 4306-4338. |
15 | CAO J Y, LI X D, WANG Y M, et al. Materials and fabrication of electrode scaffolds for deposition of MnO2 and their true performance in supercapacitors[J]. Journal of Power Sources, 2015, 293: 657-674. |
16 | WANG X, YAN C Y, YAN J, et al. Orthorhombic niobium oxide nanowires for next generation hybrid supercapacitor device[J]. Nano Energy, 2015, 11: 765-773. |
17 | 刘云鹏, 李雪, 韩颖慧, 等. 锂离子超级电容器电极材料研究进展[J]. 高电压技术, 2018, 44(4): 1140-1148.LIU Y P, LI X, HAN Y H, et al. Research progress in electrode materials for lithium-ion supercapacitor[J]. High Voltage Engineering, 2018, 44(4): 1140-1148. |
18 | WASEEM R, FAIZAN A, NADEEM R, et al. Recent advancements in supercapacitor technology[J]. Nano Energy, 2018, 52(5): 441-473. |
19 | GWON H, HONG J, KIM H, et al. Recent progress on flexible lithium rechargeable batteries[J]. Energy & Environmental Science, 2014, 7: 538-551. |
20 | PENG H J, HUANG J Q, ZHANG Q. A review of flexible lithium-sulfur and analogous alkali metal-chalcogen rechargeable batteries[J]. Chemical Society Reviews, 2017, 46(17): 5237-5288. |
21 | 陈斌, 吕彦伯, 谌可炜, 等. 固态超级电容器电解质的分类与研究进展[J]. 高电压技术, 2019, 45(3): 929-939.CHEN B, LYU Y B, CHEN K W, et al. Research progress of solid-state supercapacitors electrolytes and its classifications[J]. High Voltage Engineering, 2019, 45(3): 929-939. |
22 | CHOI J, GHAFFARI R, BAKER L B, et al. Skin-interfaced systems for sweat collection and analytics[J]. Science Advances, 2018, 4(2): 3921-3931. |
23 | 侯朝霞, 王凯, 屈晨滢, 等. 凝胶聚合物电解质在二次电池的研究进展[J]. 功能材料, 2020, 51(10): 10060-10068.HOU Z X, WANG K, QU C Y, et al. Research progress of gel polymer electrolytes in secondary batteries[J]. Journal of Functional Materials, 2020, 51(10): 10060-10068. |
24 | ZHONG C, DENG Y D, HU W B, et al. Electrolytes for Electrochemical Supercapacitors[M]. Boca Raton, USA: CRC Press, 2016. |
25 | YU H M, ROUELLE N, QIU A D, et al. Hydrogen bonding-reinforced hydrogel electrolyte for flexible, robust, and all-in-one supercapacitor with excellent low-temperature tolerance[J]. ACS Applied Materials & Interfaces, 2020, 12(34): 37977-37985. |
26 | WANG Y K, CHEN F, LIU Z X, et al. A highly elastic and reversibly stretchable all-polymer supercapacitor[J]. Angewandte Chemie, 2019, 58(44): 15707-15711. |
27 | FANG L, CAI Z F, DING Z Q, et al. Skin-inspired surface-microstructured tough hydrogel electrolytes for stretchable supercapacitors[J]. ACS Applied Materials & Interfaces, 2019, 11(24): 21895-21903. |
28 | LIU J, HUANG J W, CAI Q P, et al. Design of slidable polymer networks: A rational strategy to stretchable, rapid self-healing hydrogel electrolytes for flexible supercapacitors[J]. ACS Applied Materials & Interfaces, 2020, 12(18): 20479-20489. |
29 | SHI Y H, ZHANG Y, JIA L M, et al. Stretchable and self-healing integrated all-gel-state supercapacitors enabled by a notch-insensitive supramolecular hydrogel electrolyte[J]. ACS Applied Materials & Interfaces, 2018, 10(42): 36028-36036. |
30 | ZHANG H H, LI J Y, GU C, et al. High performance, flexible, poly(3,4-ethylenedioxythiophene) supercapacitors achieved by doping redox mediators in organogel electrolytes[J]. Journal of Power Sources, 2016, 332: 413-419. |
31 | ZHANG B, LI J H, LIU F, et al. Self-healable polyelectrolytes with mechanical enhancement for flexible and durable supercapacitors[J]. Chemistry—A European Journal. 2019, 25(50): 11715-11724. |
32 | LEE G, KIM J W, PARK H, et al. Skin-like, dynamically stretchable, planar supercapacitors with buckled carbon nanotube/Mn-Mo mixed oxide electrodes and air-stable organic electrolyte[J]. ACS Nano, 2019, 13(1): 855-866. |
33 | ROGERS R D, VOTH G A. Ionic liquids[J]. Accounts of Chemical Research, 2007, 40(11): 1077-1078. |
34 | LIU X H, WEN Z B, WU D B, et al. Tough BMIMCl-based ionogels exhibiting excellent and adjustable performance in high-temperature supercapacitors[J]. Journal of Materials Chemistry A, 2014, 2(30):11569-11573. |
35 | KIM W. 3 V omni-directionally stretchable one-body supercapacitors based on a single ion-gel matrix and carbon nanotubes[J]. Nanotechnology, 2016, 27(22): doi: 10.1088/0957-4484/27/22/225402. |
36 | WANG H X, DAI L X, CHAI D X, et al. Recyclable and tear-resistant all-in-one supercapacitor with dynamic electrode/electrolyte interface[J]. Journal of Colloid and Interface Science, 2019, 56: 629-637. |
37 | CHEN C R, QIN H, CONG H P, et al. A highly stretchable and real-time healable supercapacitor[J]. Advanced Materials, 2019, 31(19): doi: 10.1002/adma.201900573. |
38 | YOON J, LEE J, HUR J. Stretchable supercapacitors based on carbon nanotubes-deposited rubber polymer nanofibers electrodes with high tolerance against strain[J]. Nanomaterials, 2018, 8(7): 8070541-8070555. |
39 | WU C Y, TANG X, GAN L, et al. High-adhesion stretchable electrode via cross-linking intensified electroless deposition on a biomimetic elastomeric micropore film[J]. ACS Applied Materials & Interfaces, 2019, 11(22): 20535-20544. |
40 | ZHAO C, JIA X T, SHU K W, et al. Stretchability enhancement of buckled polypyrrole electrodes for stretchable supercapacitors via engineering substrate surface roughness[J]. Electrochimica Acta, 2020, 343: 136099-136109. |
41 | CHU X, ZHANG H T, SU H, et al. A novel stretchable supercapacitor electrode with high linear capacitance[J]. Chemical Engineering Journal, 2018, 349: 168-175. |
42 | SHANG Y Y, WANG C H, HE X D, et al. Self-stretchable, helical carbon nanotube yarn supercapacitors with stable performance under extreme deformation conditions[J]. Nano Energy, 2015, 12: 401-409. |
43 | XIE Y Z, LIU Y, ZHAO Y D, et al. Stretchable all-solid-state supercapacitor with wavy shaped polyaniline/graphene electrode[J]. Journal of Materials Chemistry A, 2014, 2(24): 9142-9149. |
44 | HUANG Y, TAO J Y, MENG W J, et al. Super-high rate stretchable polypyrrole-based supercapacitors with excellent cycling stability[J]. Nano Energy, 2015, 11: 518-525. |
45 | YUN T G, HWANG B I, KIM D, et al. Polypyrrole-MnO2-coated textile-based flexible-stretchable supercapacitor with high electrochemical and mechanical reliability[J]. ACS Applied Materials & Interfaces, 2015, 7(17): 9228-9234. |
46 | YUN J, SONG C, LEE H, et al. Stretchable array of high-performance micro-supercapacitors charged with solar cells for wireless powering of an integrated strain sensor[J]. Nano Energy, 2018, 49: 644-654. |
47 | LYU Z S, LUO Y F, TANG Y X, et al. Editable supercapacitors with customizable stretchability based on mechanically strengthened ultralong MnO2 nanowire composite[J]. Advanced Materials, 2018, 30(2): doi: 10.1002/adma.201704531. |
[1] | Haitao LI, Lingli KONG, Xin ZHANG, Chuanjun YU, Jiwei WANG, Lin XU. The effects of N/P design on the performances of Ni-rich NCM/Gr lithium ion battery [J]. Energy Storage Science and Technology, 2022, 11(7): 2040-2045. |
[2] | Zhen YAO, Qi ZHANG, Rui WANG, Qinghua LIU, Baoguo WANG, Ping MIAO. Application of biomass derived carbon materials in all vanadium flow battery electrodes [J]. Energy Storage Science and Technology, 2022, 11(7): 2083-2091. |
[3] | Xiaosa ZHANG, Hongyuan WANG, Zhenbiao LI, Zhimei XIA. New process of sulfated roasting-water leaching for treating electrode material of spent lithium iron phosphate batteries [J]. Energy Storage Science and Technology, 2022, 11(7): 2066-2074. |
[4] | Fengrong HE, Qiwen ZHANG, Dechao GUO, Yimin GUO, Xiaodong GUO. Influences of electrode structure on the electrical properties of (NMC+AC)/HC hybrid capacitor [J]. Energy Storage Science and Technology, 2022, 11(7): 2051-2058. |
[5] | Yingwei PEI, Hong ZHANG, Xinghui WANG. Recent advances in the electrolytes of rechargeable zinc-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(7): 2075-2082. |
[6] | Sida HUO, Wendong XUE, Xinli LI, Yong LI. Visualization analysis of composite electrolytes for lithium battery based on CiteSpace [J]. Energy Storage Science and Technology, 2022, 11(7): 2103-2113. |
[7] | Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2022 to May 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(7): 2007-2022. |
[8] | OU Yu, HOU Wenhui, LIU Kai. Research progress of smart safety electrolytes in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1772-1787. |
[9] | ZHOU Weidong, HUANG Qiu, XIE Xiaoxin, CHEN Kejun, LI Wei, QIU Jieshan. Research progress of polymer electrolyte for solid state lithium batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1788-1805. |
[10] | LI Yitao, SHEN Kaier, PANG Quanquan. Advance in organics enhanced sulfide-based solid-state batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1902-1918. |
[11] | Ronghan QIAO, Guanjun CEN, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Feb. 1, 2022 to Mar. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(5): 1289-1304. |
[12] | Zhicheng CHEN, Zongxu LI, Ling CAI, Yisi LIU. Development status and future prospects of flexible metal-air batteries [J]. Energy Storage Science and Technology, 2022, 11(5): 1401-1410. |
[13] | Maolin FANG, Ying ZHANG, Lin QIAO, Shumin LIU, Zhongqi CAO, Huamin ZHANG, Xiangkun MA. Research progress of iron-chromium flow batteries technology [J]. Energy Storage Science and Technology, 2022, 11(5): 1358-1367. |
[14] | Chaochao WEI, Chuang YU, Zhongkai WU, Linfeng PENG, Shijie CHENG, Jia XIE. Research progress of Li3PS4 solid electrolyte [J]. Energy Storage Science and Technology, 2022, 11(5): 1368-1382. |
[15] | Liang FANG, Kai ZHANG, Limin ZHOU. Recent advances and prospects of electrolyte for aluminum ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1236-1245. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||