Energy Storage Science and Technology ›› 2021, Vol. 10 ›› Issue (3): 836-847.doi: 10.19799/j.cnki.2095-4239.2021.0090
Previous Articles Next Articles
Yanming CUI1(), Zhihua ZHANG2, Yuanqiao HUANG1, Jiu LIN1, Xiayin YAO2, Xiaoxiong XU1,2,3()
Received:
2021-03-10
Revised:
2021-04-03
Online:
2021-05-05
Published:
2021-04-30
Contact:
Xiaoxiong XU
E-mail:cuiyanming@ganfeng lithium.com;xuxiaoxiong@ganfenglithium.com
CLC Number:
Yanming CUI, Zhihua ZHANG, Yuanqiao HUANG, Jiu LIN, Xiayin YAO, Xiaoxiong XU. Prototype all-solid-state battery electrodes preparation and assembly technology[J]. Energy Storage Science and Technology, 2021, 10(3): 836-847.
1 | 李泓. 全固态锂电池: 梦想照进现实[J]. 储能科学与技术, 2018, 7(2): 188-193.LI H. All solid state battery: Dream into reality[J]. Energy Storage Science and Technology, 2018, 7(2): 188-193. |
2 | JANEK J, ZEIER W G. A solid future for battery development[J]. Nature Energy, 2016. 1(9): 16141-16144. |
3 | PALACÍN M R. Recent advances in rechargeable battery materials: A chemist's perspective[J]. Chemical Society Reviews, 2009, 38(9): 2565-2575. |
4 | 许晓雄, 邱志军, 官亦标, 等. 全固态锂电池技术的研究现状与展望[J]. 储能科学与技术, 2013, 2(4): 331-340, 341.XU X X, QIU Z J, GUAN Y B, et al. All-solid-state lithium-ion batteries: State-of-the-art development and perspective[J]. Energy Storage Science and Technology, 2013, 2(4): 331-340, 341. |
5 | OHTA S, KOMAGATA S, SEKI J, et al. Short communication all-solid-state lithium ion battery using garnet-type oxide and Li3BO3 solid electrolytes fabricated by screen-printing[J]. Journal of Power Sources, 2013, 238: 53-56. |
6 | OKUMURA T, TAKEUCHI T, KOBAYASHI H. All-solid-state lithium-ion battery using Li2.2C0.8B0.2O3 electrolyte[J]. Solid State Ionics, 2016, 288: 248-252. |
7 | HAN F, YUE J, CHEN C, et al. Interphase engineering enabled all-ceramic lithium battery[J]. Joule, 2018, 2: 497-508. |
8 | OHTA S, SEKI J, YAGI Y, et al. Co-sinterable lithium garnet-type oxide electrolyte with cathode for all-solid-state lithium ion battery[J]. Journal of Power Sources, 2014, 265: 40-44. |
9 | LI F Z, LI J X, ZHU F. Atomically intimate contact between solid electrolytes and electrodes for Li batteries[J]. Matter, 2019, 1(4): 1001-1016. |
10 | ZHOU Q, MA J, DONG S M, et al. Intermolecular chemistry in solid polymer electrolytes for high-energy-density lithium batteries[J]. Advanced Materials, 2019, 31(50): doi: 10.1002/adma.201902029. |
11 | OHTA S, KOBAYASHI T, SEKI J, et al. Electrochemical performance of an all-solid-state lithium ion battery with garnet-type oxide electrolyte[J]. Journal of Power Sources, 2012, 202: 332-335. |
12 | YUBUCHI S, ITO Y, MATSUYAMA T, et al. 5 V class LiNi0.5Mn1.5O4 positive electrode coated with Li3PO4 thin film for all-solid-state batteries using sulfide solid electrolyte[J]. Solid State Ionics, 2016, 285: 79-82. |
13 | ZHANG Z H, CHEN S J, YAO X Y, et al. Enabling high-areal-capacity all-solid-state lithium-metal batteries by tri-layer electrolyte architectures[J]. Energy Storage Materials, 2020, 24: 714-718. |
14 | FU K, GONG Y, HITZ G T, et al. Three-dimensional bilayer garnet solid electrolyte based high energy density lithium metal-sulfur batteries[J]. Energy & Environmental Science, 2017, 10(7): 1568-1575. |
15 | YI E, SHEN H, HEYWOOD S, et al. All-solid-state batteries using rationally designed garnet electrolyte frameworks[J]. ACS Applied Energy Materials, 2020, 3(1): 170-175. |
16 | SCROSATI B, GARCHE J. Lithium batteries: Status, prospects and future[J]. Journal of Power Sources, 2010, 195(9): 2419-2430. |
17 | ZHAMU A, CHEN G R, LIU C G, et al. Reviving rechargeable lithium metal batteries: Enabling next-generation high-energy and high-power cells[J]. Energy and Environmental Science, 2012, 5(2): 5701-5707. |
18 | SHEN Y B, ZHANG Y T, HAN S J, et al. Unlocking the energy capabilities of lithium metal electrode with solid-state electrolytes[J]. Joule, 2018, 2(9): 1674-1689. |
19 | XU W, WANG J L, DING F, et al. Lithium metal anodes for rechargeable batteries[J]. Energy and Environmental Science, 2014, 7(2): 513-537. |
20 | WEST W C, WHITACRE J F, LIM J R. Chemical stability enhancement of lithium conducting solid electrolyte plates using sputtered LiPON thin films[J]. Journal of Power Sources, 2004, 126(1/2): 134-138. |
21 | ZHAO S L, FU Z W, QIN Q Z. A solid-state electrolyte lithium phosphorus oxynitride film prepared by pulsed laser deposition[J]. Thin Solid Films, 2002, 415(1/2): 108-113. |
22 | LIU Y J, LI C, LI B J, et al. Germanium thin film protected lithium aluminum germanium phosphate for solid-state Li batteries[J]. Advanced Energy Materials, 2018, 8(16): doi: 10.1002/aenm. 201702374. |
23 | TANG W, YIN X, KANG S, et al. Lithium silicide surface enrichment: A solution to lithium metal battery[J]. Advanced Materials, 2018, doi: 10.1002/adma. 201801745. |
24 | DU M J, LIAO K M, LU Q, et al. Recent advances in the interface engineering of solid-state Li-ion batteries with artificial buffer layers: Challenges, materials, construction, and characterization[J]. Energy & Environmental Science, 2019, 12(6): 1780-1804. |
25 | ZHANG Z H, ZHAO Y R, CHEN S J, et al. An advanced construction strategy of all-solid-state lithium batteries with excellent interfacial compatibility and ultralong cycle life[J]. Journal of Materials Chemistry A, 2017, 5(32): 16984-16993. |
26 | ZHANG Z H, CHEN S H, YANG J, et al. Stable cycling of all-solid-state lithium battery with surface amorphized Li1.5Al0.5Ge1.5(PO4)3 electrolyte and lithium anode[J]. Electrochimica Acta, 2019, 297: 281-287. |
27 | ZHAO C Z, ZHANG X Q, CHENG X B, et al. An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(42): 11069-11074. |
28 | ZHANG Z Z, SHAO Y J, LOTSCH B, et al. New horizons for inorganic solid state ion conductors[J]. Energy & Environmental Science, 2018, 11(8): 1945-1976. |
29 | KAMAYA N, HOMMA K, YAMAKAWA Y, et al. A lithium superionic conductor[J]. Nature Materials, 2011, 10(9): 682-686. |
30 | TAN D, WU E A, NGUYEN H, et al. Elucidating reversible electrochemical redox of Li6PS5Cl solid electrolyte[J]. ACS Energy Letters, 2019, 4(10): 2418-2427. |
31 | OH D Y, NAM Y J, PARK K H, et al. Slurry-fabricable Li+-conductive polymeric binders for practical all-solid-state lithium-ion batteries enabled by solvate ionic liquids[J]. Advanced Energy Materials, 2019, 9(16): doi: 10.1002/aenm.201802927. |
32 | ZHANG X, LIU T, ZHANG S F, et al. Synergistic coupling between Li6.75La3Zr1.75Ta0.25O12 and poly(vinylidene fluoride) induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes[J]. Journal of the American Chemical Society, 2017, 139(39): 13779-13785. |
33 | VAIL J R, KRICK B A, MARCHMAN K R, et al. Polytetrafluoroethylene (PTFE) fiber reinforced polyetheretherketone (PEEK) composites[J]. Wear, 2011, 270(11/12): 737-741. |
34 | HIPPAUF F, SCHUMM B, DOERFLER S, et al. Overcoming binder limitations of sheet-type solid-state cathodes using a solvent-free dry-film approach[J]. Energy Storage Materials, 2019, 21: 390-398. |
35 | DUONG H, SHIN J, YUDI Y. Dry electrode coating technology[C]//48th Power Sources Conference, 2018. |
36 | LEE Y G, FUJIKI S, JUNG C, et al. High-energy long-cycling all-solid-state lithium metal batteries enabled by silver-carbon composite anodes[J]. Nature Energy, 2020, 5: 299-308. |
37 | ZHU Y Z, HE X F, MO Y F. Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations[J]. ACS Applied Materials & Interfaces, 2015, 7(42): 23685-23693. |
38 | WAN H L, PENG G, YAO X Y, et al. Cu2ZnSnS4/graphene nanocomposites for ultrafast, long life all-solid-state lithium batteries using lithium metal anode[J]. Energy Storage Materials, 2016, 4: 59-65. |
39 | YAO X Y, HUANG N, HAN F D, et al. High-performance all-solid-state lithium-sulfur batteries enabled by amorphous sulfur-coated reduced graphene oxide cathodes[J]. Advanced Energy Materials, 2017, 7(17): doi: 10.1002/aenm201602923. |
40 | GAO Y, WANG D W, LI Y G, et al. Salt-based organic-inorganic nanocomposites: Towards a stable lithium metal/Li10GeP2S12 solid electrolyte interface[J]. Angewandte Chemie, 2018, 57(41): 13608-13612. |
41 | CHIEN P H, FENG X Y, TANG M X, et al. Li distribution heterogeneity in solid electrolyte Li10GeP2S12 upon electrochemical cycling probed by 7Li MRI[J]. The Journal of Physical Chemistry Letters, 2018, 9(8): 1990-1998. |
42 | WANG C H, ZHAO Y, SUN Q, et al. Stabilizing interface between Li10SnP2S12 and Li metal by molecular layer deposition[J]. Nano Energy, 2018, 53: 168-174. |
43 | ZHAO Y R, WU C, PENG G, et al. A new solid polymer electrolyte incorporating Li10GeP2S12 into a polyethylene oxide matrix for all-solid-state lithium batteries[J]. Journal of Power Sources, 2016, 301: 47-53. |
44 | KIM W, CHO J J, KANG Y K, et al. Study on cycling performances of lithium-ion polymer cells assembled by in situ chemical cross-linking with star-shaped siloxane acrylate[J]. Journal of Power Sources, 2008, 178(2): 837-841. |
45 | XU J J, YE H. Polymer gel electrolytes based on oligomeric polyether/cross-linked PMMA blends prepared viain situ polymerization[J]. Electrochemistry Communications, 2005, 7(8): 829-835. |
46 | WEI Z Y, CHEN S J, WANG J Y, et al. A large-size, bipolar-stacked and high-safety solid-state lithium battery with integrated electrolyte and cathode[J]. Journal of Power Sources, 2018, 394: 57-66. |
47 | ZHENG J, HU Y Y. New insights into the compositional dependence of Li-ion transport in polymer-ceramic composite electrolytes[J]. ACS Applied Materials & Interfaces, 2018, 10(4): 4113-4120. |
48 | CHEN L, LI Y T, LI S P, et al. PEO/garnet composite electrolytes for solid-state lithium batteries: From "ceramic-in-polymer" to "polymer-in-ceramic"[J]. Nano Energy, 2018, 46: 176-184. |
49 | 张建军, 董甜甜, 杨金凤, 等. 全固态聚合物锂电池的科研进展、挑战与展望[J]. 储能科学与技术, 2018, 7(5): 861-868.ZHANG J J, DONG T T, YANG J F, et al. Research progress, challenge and perspective of all-solid-state polymer lithium batteries[J]. Energy Storage Science and Technology, 2018, 7(5): 861-868. |
50 | EBADI M, MARCHIORI C, MINDEMARK J, et al. Assessing structure and stability of polymer/lithium-metal interfaces from first-principles calculations[J]. Journal of Materials Chemistry A, 2019, 7(14): 8394-8404. |
51 | ZHOU W D, WANG Z X, PU Y, et al. Double-layer polymer electrolyte for high-voltage all-solid-state rechargeable batteries[J]. Advanced Materials, 2019, 31(4): doi: 10.1002/adma.201805574. |
52 | WANG C, WANG T, WANG L L, et al. Differentiated lithium salt design for multilayered PEO electrolyte enables a high-voltage solid-state lithium metal battery[J]. Advanced Science, 2019, 6(22): doi: 10.1002/advs. 201901036. |
53 | YANG H C, ZHANG Y M, TENNENBAUM M J, et al. Polypropylene carbonate-based adaptive buffer layer for stable interfaces of solid polymer lithium metal batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(31): 27906-27912. |
54 | DUAN H, FAN M, CHEN W P, et al. Extended electrochemical window of solid electrolytes via heterogeneous multilayered structure for high-voltage lithium metal batteries[J]. Advanced Materials, 2019, 31(12): doi: 10. 1002/adma. 201807789. |
55 | WU N, LI Y T, DOLOCAN A, et al. In situ formation of Li3P layer enables fast Li+ conduction across Li/solid polymer electrolyte interface[J]. Advanced Functional Materials, 2020, 30(22): doi:10.1002/adfm. 202000831. |
56 | LIU Q, CAI B Y, LI S, et al. Long-cycling and safe lithium metal batteries enabled by the synergetic strategy of ex situ anodic pretreatment and an in-built gel polymer electrolyte[J]. Journal of Materials Chemistry A, 2020, 8(15): 7197-7204. |
57 | JIANG T L, HE P G, WANG G X, et al. Solvent-free synthesis of thin, flexible, nonflammable garnet-based composite solid electrolyte for all-solid-state lithium batteries[J]. Advanced Energy Materials, 2020, 10(12): doi: 10.1002/aenm. 201903376. |
58 | CHENG X B, YAN C, CHEN X, et al. Implantable solid electrolyte interphase in lithium-metal batteries[J]. Chem, 2017, 2(2): 258-270. |
[1] | Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2022 to May 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(7): 2007-2022. |
[2] | ZHOU Weidong, HUANG Qiu, XIE Xiaoxin, CHEN Kejun, LI Wei, QIU Jieshan. Research progress of polymer electrolyte for solid state lithium batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1788-1805. |
[3] | Chaochao WEI, Chuang YU, Zhongkai WU, Linfeng PENG, Shijie CHENG, Jia XIE. Research progress of Li3PS4 solid electrolyte [J]. Energy Storage Science and Technology, 2022, 11(5): 1368-1382. |
[4] | Ronghan QIAO, Guanjun CEN, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Feb. 1, 2022 to Mar. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(5): 1289-1304. |
[5] | Suting WENG, Zepeng LIU, Gaojing YANG, Simeng ZHANG, Xiao ZHANG, Qiu FANG, Yejing LI, Zhaoxiang WANG, Xuefeng WANG, Liquan CHEN. Cryogenic electron microscopy (cryo-EM) characterizing beam-sensitive materials in lithium metal batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 760-780. |
[6] | Shiwei DENG, Jianfang WU, Tuo SHI. Defect chemistry analysis of solid electrolytes: Point defects in grain bulk and grain boundary space-charge layer [J]. Energy Storage Science and Technology, 2022, 11(3): 939-947. |
[7] | Guanjun CEN, Jing ZHU, Ronghan QIAO, Xiaoyu SHEN, Hongxiang JI, Mengyu TIAN, Feng TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Dec. 1, 2021 to Jan. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(3): 1077-1092. |
[8] | Mengyu TIAN, Jing ZHU, Guanjun CEN, Ronghan QIAO, Xiaoyu SHEN, Hongxiang JI, Feng TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries(Oct. 1, 2021 to Nov. 30, 2021) [J]. Energy Storage Science and Technology, 2022, 11(1): 297-312. |
[9] | Xue HAN, Wei DENG, Xufeng ZHOU, Zhaopin LIU. Patenting activity of graphene for energy storage [J]. Energy Storage Science and Technology, 2022, 11(1): 335-349. |
[10] | Yun TANG, Fang YUE, Kaimo GUO, Lanchun LI, Wangsong KE, Wei CHEN. Analysis of the development trend and the innovation ability of an all-solid-state lithium battery technology [J]. Energy Storage Science and Technology, 2022, 11(1): 359-369. |
[11] | Hongxiang JI, Zhou JIN, Mengyu TIAN, Yida WU, Yuanjie ZHAN, Feng TIAN, Yong YAN, Guanjun CEN, Ronghan QIAO, Xiaoyu SHEN, Jing ZHU, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Aug. 1, 2021 to Sept. 30, 2021) [J]. Energy Storage Science and Technology, 2021, 10(6): 2411-2427. |
[12] | Feng TIAN, Hongxiang JI, Mengyu TIAN, Ronghan QIAO, Guanjun CEN, Xiaoyu SHEN, Yida WU, Yuanjie ZHAN, Zhou JIN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Jun. 1, 2021 to Jul. 31, 2021) [J]. Energy Storage Science and Technology, 2021, 10(5): 1854-1868. |
[13] | Yuxuan XIE, Yunju BAI, Yijun XIAO. Overall capacity allocation of energy storage tram with ground charging piles [J]. Energy Storage Science and Technology, 2021, 10(4): 1388-1399. |
[14] | Guanjun CEN, Ronghan QIAO, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2021 to May 31, 2021) [J]. Energy Storage Science and Technology, 2021, 10(4): 1237-1252. |
[15] | Dangling LIU, Shimin WANG, Zhihui GAO, Lufu XU, Shubiao XIA, Hong GUO. Properties of three-dimensional NZSPO/PAN-[PEO-NATFST] sodium-battery-composite solid electrolyte [J]. Energy Storage Science and Technology, 2021, 10(3): 931-937. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||