Energy Storage Science and Technology ›› 2021, Vol. 10 ›› Issue (6): 2060-2068.doi: 10.19799/j.cnki.2095-4239.2021.0153
• Energy Storage Materials and Devices • Previous Articles Next Articles
Chunshui SUN1,2(), Decai GUO1, Jian CHEN1()
Received:
2021-04-12
Revised:
2021-04-27
Online:
2021-11-05
Published:
2021-11-03
CLC Number:
Chunshui SUN, Decai GUO, Jian CHEN. Preparation and research of carbonized agaric material for sulfur cathodes[J]. Energy Storage Science and Technology, 2021, 10(6): 2060-2068.
1 | ARMAND M, TARASCON J. Building better batteries[J]. Nature, 2008, 451: 652-657. |
2 | AHN W, KIM K B, JUNG K N, et al. Synthesis and electrochemical properties of a sulfur-multi walled carbon nanotubes composite as a cathode material for lithium sulfur batteries[J]. Journal of Power Sources, 2012, 202: 394-399. |
3 | LIU X F, ZHANG Q, HUANG J Q, et al. Hierarchical nanostructured composite cathode with carbon nanotubes as conductive scaffold for lithium-sulfur batteries[J]. Journal of Energy Chemistry, 2013, 22(2): 341-346. |
4 | ZHENG G Y, YANG Y, CHA J J, et al. Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries[J]. Nano Letters, 2011, 11(10): 4462-4467. |
5 | ZHENG S Y, HAN P, HAN Z, et al. High performance C/S composite cathodes with conventional carbonate-based electrolytes in Li-S battery[J]. Scientific Reports, 2014, 4(4842): doi: 10.1038/srep04842. |
6 | ZHANG W H, QIAO D, PAN J X, et al. A Li+-conductive microporous carbon-sulfur composite for Li-S batteries[J]. Electrochimica Acta, 2013, 87: 497-502. |
7 | MA Z L, DOU S, SHEN A L, et al. Sulfur-doped graphene derived from cycled lithium-sulfur batteries as a metal-free electrocatalyst for the oxygen reduction reaction[J]. Angewandte Chemie International Edition, 2015, 54(6): 1888-1892. |
8 | JI L W, RAO M M, ZHENG H M, et al. Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells[J]. Journal of the American Chemical Society, 2011, 133(46): 18522-18525. |
9 | SCHUSTER J, HE G, MANDLMEIER B, et al. Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium-sulfur batteries[J]. Angewandte Chemie-International Edition, 2012, 51(15): 3591-3595. |
10 | YANG Z Z, WANG H Y, LU L, et al. Hierarchical TiO2 spheres as highly efficient polysulfide host for lithium-sulfur batteries[J]. Scientific Reports, 2016, 6: 22990. |
11 | CUI Z M, ZU C X, ZHOU W D, et al. Mesoporous titanium nitride-enabled highly stable lithium-sulfur batteries[J]. Advanced Materials, 2016, 28(32): 6926-6931. |
12 | NI L B, WU Z, ZHAO G J, et al. Core-shell structure and interaction mechanism of γ-MnO2 coated sulfur for improved lithium-sulfur batteries[J]. Small, 2017,13(14): 1603466. |
13 | SEH Z W, LI W, CHA J J, et al. Sulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries[J]. Nature Communications, 2013, 4: 1331-1336. |
14 | ZHANG Y Y, ZHAO Y, BAKENOV Z, et al. Preparation of novel network nanostructured sulfur composite cathode with enhanced stable cycle performance[J]. Journal of Power Sources, 2014, 270: 326-331. |
15 | LIANG X, ZHANG M G, KAISER M R, et al. Split-half-tubular polypyrrole@sulfur@polypyrrole composite with a novel three-layer-3D structure as cathode for lithium/sulfur batteries[J]. Nano Energy, 2015, 11: 587-599. |
16 | ZHOU W D, YU Y C, CHEN H, et al. Yolk-shell structure of polyaniline-coated sulfur for lithium-sulfur batteries[J]. Journal of the American Chemical Society, 2013, 135(44): 16736-16743. |
17 | PENG H J, ZHANG Q. Designing host materials for sulfur cathodes: from physical confinement to surface chemistry[J]. Angewandte Chemie International Edition, 2015, 54(38): 11018-11020. |
18 | ZU C X, MANTHIRAM A. Hydroxylated graphene-sulfur nanocomposites for high-rate lithium-sulfur batteries[J]. Advanced Energy Materials, 2013, 3(8): 1008-1012. |
19 | YANG K, GAO Q M, TAN Y L, et al. Biomass-derived porous carbon with micropores and small mesopores for high-performance lithium-sulfur batteries[J]. Chemistry, 2016, 22(10): 3239-3244. |
20 | BRUN N, SAKAUSHI K, YU L H, et al. Hydrothermal carbon-based nanostructured hollow spheres as electrode materials for high-power lithium-sulfur batteries[J]. Physical Chemistry Chemical Physics, 2013, 15(16): 6080-6087. |
21 | DU J, YANG Y C, FAN Z, et al. Biotemplating fabrication, mechanical and electrical characterizations of NbC nanowire arrays from the bamboo substrate[J]. Journal of Alloys and Compounds, 2013, 560: 142-146. |
22 | ZHU Y, ZHAO W D, YE X R. Supercritical preparation and electrochemical study of lithium-sulfur battery cathode materials derived from biomass[J]. Material Sciences, 2019, 9(2): 142-150. |
23 | CHEN H W, XIA P T, LEI W X, et al. Preparation of activated carbon derived from biomass and its application in lithium-sulfur batteries[J]. Journal of Porous Materials, 2019, 26(5): 1325-1333. |
24 | SONG Y, WANG H, MA Q L, et al. Dandelion derived nitrogen-doped hollow carbon host for encapsulating sulfur in lithium sulfur battery[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(3): 3042-3051. |
25 | LI J-J, YANG Z-J, ZHAO L, et al. Biowaste-derived three-dimensional nitrogen-doped hierarchically porous carbon materials for lithium-sulfur batteries[J]. Chinese Science Bulletin, 2018, 63(35): 3843-3854. |
26 | BENITEZ A, GONZALEZ-TEJERO M, CABALLERO A, et al. Almond shell as a microporous carbon source for sustainable cathodes in lithium(-)sulfur batteries[J]. Materials, 2018, 11(8): 1428. |
27 | REN H X, GAO Z M, WU D J, et al. Efficient Pb(Ⅱ) removal using sodium alginate-carboxymethyl cellulose gel beads: preparation, characterization, and adsorption mechanism[J]. Carbohydrate Polymers, 2016, 137: 402-409. |
28 | QIN J, HE C N, ZHAO N Q, et al. Graphene networks anchored with Sn@graphene as lithium ion battery anode[J]. ACS Nano, 2014, 8(2): 1728-1738. |
29 | LI J Q, LI S, LIU Q, et al. Synthesis of hydrogen-substituted graphyne film for lithium-sulfur battery applications[J]. Small, 2019, 15(13): e1805344. |
30 | ZHENG G Y, ZHANG Q F, CHA J J, et al. Amphiphilic surface modification of hollow carbon nanofibers for improved cycle life of lithium sulfur batteries[J]. Nano Letters, 2013, 13(3): 1265-1270. |
31 | LI Y C, MI R, LI S M, et al. Sulfur-nitrogen doped multi walled carbon nanotubes composite as a cathode material for lithium sulfur batteries[J]. International Journal of Hydrogen Energy, 2014, 39(28): 16073-16080. |
[1] | Yuzuo WANG, Yinli LU, Miao DENG, Bin YANG, Xuewen YU, Ge JIN, Dianbo RUAN. Research progress of self-discharge in supercapacitors [J]. Energy Storage Science and Technology, 2022, 11(7): 2114-2125. |
[2] | ZHANG Hong, ZHANG Yang, ZHAO Yao, WANG Jiulin. Research progress of sulfur cathode in solid-solid conversion reaction [J]. Energy Storage Science and Technology, 2022, 11(6): 1919-1933. |
[3] | Chaochao WEI, Chuang YU, Zhongkai WU, Linfeng PENG, Shijie CHENG, Jia XIE. Research progress of Li3PS4 solid electrolyte [J]. Energy Storage Science and Technology, 2022, 11(5): 1368-1382. |
[4] | ZHANG Jinliang, KANG Danmiao, LIU Junqing, SU Zhijiang, LIANG Wenbin. Electrochemical performance of water soluble pitch-based porous carbons [J]. Energy Storage Science and Technology, 2020, 9(3): 743-750. |
[5] | YUAN Yan, ZHENG Dongdong, FANG Zhao, LIU Manbo, LI Tao. Research progress on sulfur cathode of lithium sulfur battery [J]. Energy Storage Science and Technology, 2018, 7(4): 618-630. |
[6] | WANG Weikun, WANG Anbang, JIN Zhaoqing, YANG Yusheng. Development and strategy for cathode materials of advanced lithium sulfur batteries [J]. Energy Storage Science and Technology, 2017, 6(3): 331-344. |
[7] | YUAN Huadong, LUO Jianmin, JIN Chengbin, SHENG Ouwei, HUANG Hui, ZHANG Wenkui, TAO Xinyong . Carbon materials with modified surfaces and interfaces for the high performance cathode of lithium sulfur batteries [J]. Energy Storage Science and Technology, 2017, 6(3): 380-410. |
[8] | SUN Yingzhi, HUANG Jiaqi, ZHANG Xueqiang, ZHANG Qiang. Review on solid state lithium-sulfur batteries with sulfide solid electrolytes [J]. Energy Storage Science and Technology, 2017, 6(3): 464-478. |
[9] | QIAO Zhijun, RUAN Dianbo, YUAN Jun, FU Guansheng, YANG Bin. 3D-honeycomb carbons for high performance electrical double layer capacitors electrodes [J]. Energy Storage Science and Technology, 2016, 5(4): 527-531. |
[10] | ZHANG Tao, WANG Wenqiang, WANG Gengchao. Matching the positive and negative electrode based on hierarchical porous carbon supporting π-conjugated polymers composites for asymmetric organic supercapacitor [J]. Energy Storage Science and Technology, 2016, 5(4): 469-477. |
[11] | PENG Jiayue, LIU Yali, HUANG Jie, LI Hong. Fundamental scientific aspects of lithium ion batteries(Ⅺ)--Lithium air and lithium sulfur batteries [J]. Energy Storage Science and Technology, 2014, 3(5): 526-543. |
[12] | LIU Xinyan, PENG Hongjie, HUANG Jiaqi, ZHANG Qiang, WEI Fei. Carbon nanotubes for flexible energy storage devices--A review [J]. Energy Storage Science and Technology, 2013, 2(5): 433-450. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||