Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (1): 379-396.doi: 10.19799/j.cnki.2095-4239.2021.0295
• Technical Economic Analysis of Energy Storage • Previous Articles Next Articles
Huakun HU(), Xinli LI, Wendong XUE(), Peng JIANG, Yong LI
Received:
2021-06-29
Revised:
2021-07-30
Online:
2022-01-05
Published:
2022-01-10
Contact:
Wendong XUE
E-mail:S20200312@xs.ustb.edu.cn;xuewendong@ustb.edu.cn
CLC Number:
Huakun HU, Xinli LI, Wendong XUE, Peng JIANG, Yong LI. Knowledge map analysis of a low-temperature electrolyte for lithium-ion battery based on CiteSpace[J]. Energy Storage Science and Technology, 2022, 11(1): 379-396.
Table 1
High cited author in three stages"
阶段 | 被引作者 | 被引频次 | 阶段 | 被引作者 | 被引频次 |
---|---|---|---|---|---|
1 2 | Ohzuku T Tarascon J M Gummow R J Thackeray M M Delmas C Dahn J R Reimers J N Xia Y Y Ohzuku T Padhi A K Tarascon J M Yamada A Chung S Y Thackeray M M Huang H Whittingham M S Sun Y K Lu Z H Myung S T Aurbach D Shaju K M Delmas C | 211 134 130 119 114 105 98 73 1304 1263 1034 763 680 676 618 598 548 546 539 512 509 474 | 3 | Goodenough J B Tarascon J M Armand M Yabuuchi N Thackeray M M Liu J Padhi A K Manthiram A Whittingham M S Wang L Ohzuku T Sun Y K Kim H Bruce P G Aurbach D Wang Y Zheng J M Wu F Wang J Dunn B Li J Zhang S S | 3384 3351 3079 2536 2428 2424 2268 2218 2159 2067 2030 1979 1977 1953 1840 1689 1547 1511 1451 1419 1391 1378 |
Table 2
Distribution of the number of papers issued by the main countries in the three stages"
阶段 | 国家/地区 | 发文数量 | 开始发表年份 |
---|---|---|---|
1 | USA JAPAN FRANCE PEOPLES R CHINA GERMANY SWEDEN ITALY NETHERLANDS INDIA | 23 19 7 5 5 3 3 3 3 | 1998 1997 1996 2001 1999 1999 2001 1997 2000 |
2 | PEOPLES R CHINA USA JAPAN SOUTH KOREA INDIA FRANCE GERMANY CANADA ITALY | 166 157 79 60 29 26 21 19 19 | 2003 2003 2003 2003 2003 2003 2003 2003 2003 |
3 | PEOPLES R CHINA USA JAPAN GERMANY SOUTH KOREA INDIA CANADA FRANCE AUSTRALIA SPAIN | 971 496 176 169 166 94 88 76 52 51 | 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 |
Table 3
Distribution of cooperation among research institutions from 1985 to 2020"
研究机构 | 发文数量 | 中介中心性 | 开始发表年份 |
---|---|---|---|
Chinese Acad Sci Argonne Natl Lab Tsinghua Univ Univ Munster Korea Inst Sci & Technol Karlsruhe Inst Technol Univ Calif Berkeley Hanyang Univ HIU Kyoto Univ | 188 56 69 35 17 12 26 24 11 38 | 0.24 0.12 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.04 | 2002 2002 2001 2009 2006 2014 2003 2007 2014 2001 |
Table 4
Distribution of disciplines of low temperature electrolyte from 1985 to 2020"
学科类别 | 中介中心性 | 出现年份 |
---|---|---|
ENGINEERING PHYSICS CHEMISTRY CHEMISTRY, MULTIDISCIPLINARY POLYMER SCIENCE MATERIALS SCIENCE, MULTIDISCIPLINARY MATERIALS SCIENCE SCIENCE & TECHNOLOGY-OTHER TOPICS CHEMISTRY, PHYSICAL ENERGY & FUELS | 0.38 0.35 0.32 0.26 0.25 0.14 0.1 0.1 0.09 0.08 | 2001 1996 1996 2003 2001 1997 1997 2005 1996 1997 |
1 | 孟祥飞, 庞秀岚, 崇锋, 等. 电化学储能在电网中的应用分析及展望[J]. 储能科学与技术, 2019, 8(S1): 38-42. |
MENG X F, PANG X L, CHONG F, et al. Application analysis and prospect of electrochemical energy storage in power grid[J]. Energy Storage Science and Technology, 2019, 8(S1): 38-42. | |
2 | 刘英军, 刘亚奇, 张华良, 等. 我国储能政策分析与建议[J]. 储能科学与技术, 2021, 10(4): 1463-1473. |
LIU Y J, LIU Y Q, ZHANG H L, et al. Energy storage policy analysis and suggestions in China[J]. Energy Storage Science and Technology, 2021, 10(4): 1463-1473. | |
3 | GUPTA A, MANTHIRAM A. Designing advanced lithium-based batteries for low-temperature conditions[J]. Advanced Energy Materials, 2020, 10(38): doi: 10.1002/aenm.202001972. |
4 | RODRIGUES M T F, BABU G, GULLAPALLI H, et al. A materials perspective on Li-ion batteries at extreme temperatures[J]. Nature Energy, 2017, 2: doi: 10.1038/nenergy.2017.108. |
5 | 梁君飞, 李艳梅, 袁浩, 等. 低温锂离子电池研究进展[J/OL]. 北京航空航天大学学报, 2021. https://doi.org/10.13700/j.bh.1001-5965. 2020.0587. |
LIANG J F, LI Y M, YUAN H, et al. Recent progress of low-temperature lithium-ion batteries[J/OL]. Journal of Beijing University of Aeronautics and Astronautics, 2021. https://doi.org/10.13700/j.bh.1001-5965.2020.0587. | |
6 | LEI Z G, ZHANG Y W, LEI X G. Improving temperature uniformity of a lithium-ion battery by intermittent heating method in cold climate[J]. International Journal of Heat and Mass Transfer, 2018, 121: 275-281. |
7 | TAN J W, RYAN E M. Structured electrolytes to suppress dendrite growth in high energy density batteries[J]. International Journal of Energy Research, 2016, 40(13): 1800-1810. |
8 | WANG C Y, ZHANG G, GE S, et al. Lithium-ion battery structure that self-heats at low temperatures[J]. Nature, 2016, 529(7587): 515-518. |
9 | HOLOUBEK J, YIN Y J, LI M Q, et al. Exploiting mechanistic solvation kinetics for dual-graphite batteries with high power output at extremely low temperature[J]. Angewandte Chemie, 2019, 131(52): 19068-19073. |
10 | ZHANG S S, XU K, JOW T R. Low temperature performance of graphite electrode in Li-ion cells[J]. Electrochimica Acta, 2002, 48(3): 241-246. |
11 | NAGASUBRAMANIAN G. Electrical characteristics of 18650 Li-ion cells at low temperatures[J]. Journal of Applied Electrochemistry, 2001, 31(1): 99-104. |
12 | GOODENOUGH J B, KIM Y. Challenges for rechargeable batteries[J]. Journal of Power Sources, 2011, 196(16): 6688-6694. |
13 | HAIK O, AMALRAJ F S, HIRSHBERG D, et al. Thermal processes in the systems with Li-battery cathode materials and LiPF6-based organic solutions[J]. Journal of Solid State Electrochemistry, 2014, 18(8): 2333-2342. |
14 | ZHU J G, SUN Z C, WEI X Z, et al. An alternating current heating method for lithium-ion batteries from subzero temperatures[J]. International Journal of Energy Research, 2016, 40(13): 1869-1883. |
15 | ZHANG Z Y, HU T S, SUN Q M, et al. The optimized LiBF4 based electrolytes for TiO2(B) anode in lithium ion batteries with an excellent low temperature performance[J]. Journal of Power Sources, 2020, 453: doi: 10.1016/j.jpowsour.2020.227908. |
16 | WANG C S, APPLEBY A J, LITTLE F E. Low-temperature characterization of lithium-ion carbon anodes via microperturbation measurement[J]. Journal of the Electrochemical Society, 2002, 149(6): A754-A760. |
17 | KAFLE J, HARRIS J, CHANG J, et al. Development of wide temperature electrolyte for graphite/ LiNiMnCoO2 Li-ion cells: High throughput screening[J]. Journal of Power Sources, 2018, 392: 60-68. |
18 | JI Y, WANG C Y. Heating strategies for Li-ion batteries operated from subzero temperatures[J]. Electrochimica Acta, 2013, 107: 664-674. |
19 | CHEN M, LI J J. Experimental study on heating performance of pure electric vehicle power battery under low temperature environment[J]. International Journal of Heat and Mass Transfer, 2021, 172: doi: 10.1016/j.ijheatmasstransfer.2021.121191. |
20 | MARSH R A, VUKSON S, SURAMPUDI S, et al. Li ion batteries for aerospace applications[J]. Journal of Power Sources, 2001, 97/98: 25-27. |
21 | MANDAL B K, PADHI A K,SHI Z,et al.New low temperature electrolytes with thermal runaway inhibition for lithium-ion rechargeable batteries[J]. Journal of Power Sources, 2006,162(1): 690-695. |
22 | SMART M C, LUCHT B L, DALAVI S, et al. The effect of additives upon the performance of MCMB/LiNixCo1–xO2 Li-ion cells containing methyl butyrate-based wide operating temperature range electrolytes[J]. Journal of the Electrochemical Society, 2012, 159(6): A739-A751. |
23 | KASPRZYK M, ZALEWSKA A, NIEDZICKI L, et al. Non-crystallizing solvent mixtures and lithium electrolytes for low temperatures[J]. Solid State Ionics, 2017, 308: 22-26. |
24 | LAI Y Q, PENG B, ZHANG Z A, et al. A wide operating temperature range electrolyte containing lithium salts mixture and a co-solvent for the LiFePO4 cathode[J]. Journal of the Electrochemical Society, 2014, 161(6): A875-A879. |
25 | XU J, WANG X, YUAN N Y, et al. Extending the low temperature operational limit of Li-ion battery to -80 ℃[J]. Energy Storage Materials, 2019, 23: 383-389. |
26 | XU J, YUAN N Y, RAZAL J M, et al. Temperature-independent capacitance of carbon-based supercapacitor from -100 to 60 ℃[J]. Energy Storage Materials, 2019, 22: 323-329. |
27 | LI S Y, LI X P, LIU J L, et al. A low-temperature electrolyte for lithium-ion batteries[J]. 2015, 21(4): 901-907. |
28 | FAN J. On the discharge capability and its limiting factors of commercial 18650 Li-ion cell at low temperatures[J]. Journal of Power Sources, 2003, 117(1/2): 170-178. |
29 | CHEN C M. CiteSpace Ⅱ: Detecting and visualizing emerging trends and transient patterns in scientific literature[J]. Journal of the American Society for Information Science and Technology, 2006, 57(3): 359-377. |
30 | CHEN C. Searching for intellectual turning points: Progressive knowledge domain visualization[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(Suppl 1): 5303-5310. |
31 | 赵晏强, 李印结, 吴跃伟, 等. 基于文献计量和关键词的锂离子电池正极材料的研究进展[J]. 材料导报, 2014, 28(3): 140-145. |
ZHAO Y Q, LI Y J, WU Y W, et al. Research progress of cathode materials for lithium-ion battery based on literature metrology and keywords[J]. Materials Review, 2014, 28(3): 140-145. | |
32 | 陈锦攀, 陈春晓, 胡志刚. 锂离子电池储能系统的研究进展[J]. 电池, 2019, 49(1): 79-82. |
CHEN J P, CHEN C X, HU Z G. Review of Li-ion battery energy storage system[J]. Battery Bimonthly, 2019, 49(1): 79-82. | |
33 | 陈丽萍, 冯金奎, 田园, 等. 基于文献计量学的锂二次电池研究知识图谱分析[J]. 储能科学与技术, 2021, 10(3): 1196-1205. |
CHEN L P, FENG J K, TIAN Y, et al. Knowledge mapping analysis of lithium secondary batteries research based on bibliometrics[J]. Energy Storage Science and Technology, 2021, 10(3): 1196-1205. | |
34 | ZHANG S S. A review on the separators of liquid electrolyte Li-ion batteries[J]. Journal of Power Sources, 2007, 164(1): 351-364. |
35 | ZHANG S S, XU K, JOW T R. Electrochemical impedance study on the low temperature of Li-ion batteries[J]. Electrochimica Acta, 2004, 49(7): 1057-1061. |
36 | ZHANG S S, XU K, JOW T R. The low temperature performance of Li-ion batteries[J]. Journal of Power Sources, 2003, 115(1): 137-140. |
37 | SHENG S Z. An unique lithium salt for the improved electrolyte of Li-ion battery[J]. Electrochemistry Communications, 2006, 8(9): 1423-1428. |
38 | XU K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries[J]. Chemical Reviews, 2004, 104(10): 4303-4418. |
39 | XU K. Electrolytes and interphases in Li-ion batteries and beyond[J]. Chemical Reviews, 2014, 114(23): 11503-11618. |
40 | JOW T R, DING M S, XU K, et al. Nonaqueous electrolytes for wide-temperature-range operation of Li-ion cells[J]. Journal of Power Sources, 2003, 119/120/121: 343-348. |
41 | DING M S, XU K, JOW T R. Conductivity and viscosity of PC-DEC and PC-EC solutions of LiBOB[J]. Journal of the Electrochemical Society, 2005, 152(1): A132-A140. |
42 | SMART M C, WHITACRE J F, RATNAKUMAR B V, et al. Electrochemical performance and kinetics of Li1+x(Co1/3Ni1/3Mn1/3)1-xO2 cathodes and graphite anodes in low-temperature electrolytes[J]. Journal of Power Sources, 2007, 168(2): 501-508. |
43 | SMART M C, RATNAKUMAR B V, CHIN K B, et al. Lithium-ion electrolytes containing ester cosolvents for improved low temperature performance[J]. Journal of the Electrochemical Society, 2010, 157(12): A1361-A1374. |
44 | SMART M C, RATNAKUMAR B V, BEHAR A, et al. Gel polymer electrolyte lithium-ion cells with improved low temperature performance[J]. Journal of Power Sources, 2007, 165(2): 535-543. |
45 | FONG R, SACKEN U, DAHN J R. Studies of lithium intercalation into carbons using nonaqueous electrochemical cells[J]. Journal of the Electrochemical Society, 1990, 137(7): 2009-2013. |
46 | SMART M C, RATNAKUMAR B V, WHITCANACK L, et al. Performance characteristics of lithium ion cells at low temperatures[C]//IEEE Aerospace and Electronic Systems Magazine. IEEE, 2002: 16-20. |
47 | SMART M C, RATNAKUMAR B V, WHITCANACK L D, et al. Improved low-temperature performance of lithium-ion cells with quaternary carbonate-based electrolytes[J]. Journal of Power Sources, 2003, 119/120/121: 349-358. |
48 | ZHANG S, XU K, JOW T. Low-temperature performance of Li-ion cells with a LiBF4-based electrolyte[J]. Journal of Solid State Electrochemistry, 2003, 7(3): 147-151. |
49 | LOGAN E R, TONITA E M, GERING K L, et al. A study of the physical properties of Li-ion battery electrolytes containing esters[J]. Journal of the Electrochemical Society, 2018, 165(2): A21-A30. |
50 | LIAO B, LI H Y, XU M Q, et al. Designing low impedance interface films simultaneously on anode and cathode for high energy batteries[J]. Advanced Energy Materials, 2018, 8(22): doi: 10.1002/aenm.201800802. |
51 | WU F, ZHU Q Z, LI L, et al. A diisocyanate/sulfone binary electrolyte based on lithium difluoro(oxalate)borate for lithium batteries[J]. Journal of Materials Chemistry A, 2013, 1(11): doi: 10.1039/C3TA01182H. |
52 | 陈人杰, 吴锋, 张海琴, 等. 一种锂二次电池电解液添加剂及溶剂: CN201110117437.X[P]. 2011-10-05. |
CHEN R J, WU F, ZHANG H Q, et al. Additive and solvent of lithium secondary battery electrolyte: CN201110117437.X[P]. 2011-10-05. | |
53 | WANG X L,XIAO R J,LI H,et al. Oxysulfide lialso: A lithium superionic conductor from first principles[J]. ECS Meeting Abstracts, 2017, doi: 10.1149/ma2017-02/4/379. |
54 | CHEN R, LI Q, YU X, et al. Approaching practically accessible solid-state batteries: Stability issues related to solid electrolytes and interfaces[J]. Chemical Reviews, 2020, 120(14): 6820-6877. |
55 | XU G J, SHANGGUAN X H, DONG S M, et al. Formulation of blended-lithium-salt electrolytes for lithium batteries[J]. Angewandte Chemie International Edition, 2020, 59(9): 3400-3415. |
56 | 夏求应, 孙硕, 徐璟, 等. 薄膜型全固态锂电池[J]. 储能科学与技术, 2018, 7(4): 565-574. |
XIA Q Y, SUN S, XU J, et al. All-solid-state thin film lithium batteries[J]. Energy Storage Science and Technology, 2018, 7(4): 565-574. | |
57 | 杨建锋, 李林艳, 吴振岳, 等. 无机固态锂离子电池电解质的研究进展[J]. 储能科学与技术, 2019, 8(5): 829-837. |
YANG J F, LI L Y, WU Z Y, et al. Progress of inorganic solid electrolyte for lithium ion batteries[J]. Energy Storage Science and Technology, 2019, 8(5): 829-837. | |
58 | LIAO L X, CHENG X Q, MA Y L, et al. Fluoroethylene carbonate as electrolyte additive to improve low temperature performance of LiFePO4 electrode[J]. Electrochimica Acta, 2013, 87: 466-472. |
59 | ZUO Y X, YU Y, ZUO C C, et al. Low-temperature performance of Al-air batteries[J]. Energies, 2019, 12(4): doi: 10.3390/en12040612. |
60 | SMART M C, RATNAKUMAR B V, SURAMPUDI S. Use of organic esters as cosolvents in electrolytes for lithium-ion batteries with improved low temperature performance[J]. Journal of the Electrochemical Society, 2002, 149(4): A361-A370. |
61 | SAZHIN S V, KHIMCHENKO M Y, TRITENICHENKO Y N, et al. Performance of Li-ion cells with new electrolytes conceived for low-temperature applications[J]. Journal of Power Sources, 2000, 87(1/2): 112-117. |
62 | HUANG C K, SAKAMOTO J S, WOLFENSTINE J, et al. The limits of low-temperature performance of Li-ion cells[J]. Journal of the Electrochemical Society, 2000, 147(8): doi: 10.1149/1.1393622. |
63 | MANDAL B K, PADHI A K, SHI Z, et al. New low temperature electrolytes with thermal runaway inhibition for lithium-ion rechargeable batteries[J]. Journal of Power Sources, 2006, 162(1): 690-695. |
64 | PELED E. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—The solid electrolyte interphase model[J]. Journal of the Electrochemical Society, 1979, 126(12): 2047-2051. |
65 | 李杨, 丁飞, 桑林, 等. 全固态锂离子电池关键材料研究进展[J]. 储能科学与技术, 2016, 5(5): 615-626. |
LI Y, DING F, SANG L, et al. A review of key materials for all-solid-state lithium ion batteries[J]. Energy Storage Science and Technology, 2016, 5(5): 615-626. | |
66 | 任耀宇. 全固态锂电池研究进展[J]. 科技导报, 2017, 35(8): 26-36. |
REN Y Y. Research progress on all-solid-state lithium batteries[J]. Science & Technology Review, 2017, 35(8): 26-36. | |
67 | 吴敬华, 姚霞银. 基于硫化物固体电解质全固态锂电池界面特性研究进展[J]. 储能科学与技术, 2020, 9(2): 501-514. |
WU J H, YAO X Y. Recent progress in interfaces of all-solid-state lithium batteries based on sulfide electrolytes[J]. Energy Storage Science and Technology, 2020, 9(2): 501-514. | |
68 | 黄祯, 杨菁, 陈晓添, 等. 无机固体电解质材料的基础与应用研究[J]. 储能科学与技术, 2015, 4(1): 1-18. |
HUANG Z, YANG J, CHEN X T, et al. Research progress of inorganic solid electrolytes in foundmental and application field[J]. Energy Storage Science and Technology, 2015, 4(1): 1-18. | |
69 | 查文平, 李君阳, 阳敦杰, 等. 无机固体电解质Li7La3Zr2O12的研究进展[J]. 中国材料进展, 2017, 36(10): 700-707, 727. |
ZHA W P, LI J Y, YANG D J, et al. Research advance of inorganic solid electrolyte Li7La3Zr2O12[J]. Materials China, 2017, 36(10): 700-707, 727. | |
70 | WANG A R, ZHOU W J, HUANG A X, et al. Developing improved electrolytes for aqueous zinc-ion batteries to achieve excellent cyclability and antifreezing ability[J]. Journal of Colloid and Interface Science, 2021, 586: 362-370. |
71 | WANG Y Y, HOU B H, GUO J Z, et al. An ultralong lifespan and low-temperature workable sodium-ion full battery for stationary energy storage[J]. Advanced Energy Materials, 2018, 8(18): doi: 10.1002/aenm.201703252. |
72 | RUI X H, ZHANG X H, XU S T, et al. NASICON electrodes: A low-temperature sodium-ion full battery: Superb kinetics and cycling stability[J]. Advanced Functional Materials, 2021, 31(11): doi: 10.1002/adfm.202170070. |
73 | 卞锋菊, 张忠如, 杨勇. 添加剂氟代乙烯碳酸酯对锂离子电池低温性能影响的机制研究[J]. 电化学, 2013, 19(4): 355-360. |
BIAN F J, ZHANG Z R, YANG Y. Effects of fluoroethylene carbonate additive on low temperature performance of Li-ion batteries[J]. Journal of Electrochemistry, 2013, 19(4): 355-360. | |
74 | TAN S, RODRIGO U N D, SHADIKE Z, et al. Novel low-temperature electrolyte using isoxazole as the main solvent for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(21): 24995-25001. |
75 | THENUWARA A C, SHETTY P P, KONDEKAR N, et al. Efficient low-temperature cycling of lithium metal anodes by tailoring the solid-electrolyte interphase[J]. ACS Energy Letters, 2020, 5(7): 2411-2420. |
76 | 陈萌, 刘中奎, 左阳, 等. 碳酸亚乙烯酯对锂离子电池性能的影响[J]. 电源技术, 2018, 42(7): 948-950, 961. |
CHEN M, LIU Z K, ZUO Y, et al. Effect of ethylene carbonate on performance of lithium ion batteries[J]. Chinese Journal of Power Sources, 2018, 42(7): 948-950, 961. | |
77 | XU J, WANG X, YUAN N Y, et al. Extending the low temperature operational limit of Li-ion battery to -80 ℃[J]. Energy Storage Materials, 2019, 23: 383-389. |
78 | QU H N, KAFLE J, HARRIS J, et al. Application of ac impedance as diagnostic tool—Low temperature electrolyte for a Li-ion battery[J]. Electrochimica Acta, 2019, 322: doi: 10.1016/j.electacta. 2019.134755. |
79 | 林海, 郑家新, 林原, 等. 材料基因组技术在新能源材料领域应用进展[J]. 储能科学与技术, 2017, 6(5): 990-999. |
LIN H, ZHENG J X, LIN Y, et al. The development of material genome technology in the field of new energy materials[J]. Energy Storage Science and Technology, 2017, 6(5): 990-999. | |
80 | 肖睿娟, 李泓, 陈立泉. 基于材料基因组方法的锂电池新材料开发[J]. 物理学报, 2018, 67(12): 291-299. |
XIAO R J, LI H, CHEN L Q. Development of new lithium battery materials by material genome initiative[J]. Acta Physica Sinica, 2018, 67(12): 291-299. |
[1] | Shunmin YI, Linbo XIE, Li PENG. Remaining useful life prediction of lithium-ion batteries based on VF-DW-DFN [J]. Energy Storage Science and Technology, 2022, 11(7): 2305-2315. |
[2] | Qingwei ZHU, Xiaoli YU, Qichao WU, Yidan XU, Fenfang CHEN, Rui HUANG. Semi-empirical degradation model of lithium-ion battery with high energy density [J]. Energy Storage Science and Technology, 2022, 11(7): 2324-2331. |
[3] | Yuzuo WANG, Jin WANG, Yinli LU, Dianbo RUAN. Study on the effects of pore structure on lithium-storage performances for soft carbon [J]. Energy Storage Science and Technology, 2022, 11(7): 2023-2029. |
[4] | Wei KONG, Jingtao JIN, Xipo LU, Yang SUN. Study on cooling performance of lithium ion batteries with symmetrical serpentine channel [J]. Energy Storage Science and Technology, 2022, 11(7): 2258-2265. |
[5] | Sida HUO, Wendong XUE, Xinli LI, Yong LI. Visualization analysis of composite electrolytes for lithium battery based on CiteSpace [J]. Energy Storage Science and Technology, 2022, 11(7): 2103-2113. |
[6] | YAN Qiaoyi, WU Feng, CHEN Renjie, LI Li. Recovery and resource recycling of graphite anode materials for spent lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1760-1771. |
[7] | WANG Yuzuo, DENG Miao, WANG Jin, YANG Bin, LU Yinli, JIN Ge, RUAN Dianbo. Study on the effects of carbonization temperature on lithium-storage kinetics for soft carbon [J]. Energy Storage Science and Technology, 2022, 11(6): 1715-1724. |
[8] | YU Chunhui, HE Ziying, ZHANG Chenxi, LIN Xianqing, XIAO Zhexi, WEI Fei. The analyses and suppressing strategies of silicon anode with the electrolyte [J]. Energy Storage Science and Technology, 2022, 11(6): 1749-1759. |
[9] | WANG Can, MA Pan, ZHU Guoliang, WEI Shuimiao, YANG Zhilu, ZHANG Zhiyu. Effect of lithium acrylic-coated nature graphite on its electrochemical properties [J]. Energy Storage Science and Technology, 2022, 11(6): 1706-1714. |
[10] | LIU Hangxin, CHEN Xiantao, SUN Qiang, ZHAO Chenxi. Cycle performance characteristics of soft pack lithium-ion batteries under vacuum environment [J]. Energy Storage Science and Technology, 2022, 11(6): 1806-1815. |
[11] | Guangyu CHENG, Xinwei LIU, Yueni MEI, Honghui GU, Cheng YANG, Ke WANG. Capacity fading analysis of lithium-ion battery after high temperature storage [J]. Energy Storage Science and Technology, 2022, 11(5): 1339-1349. |
[12] | Yanwen DAI, Aiqing YU. Combined CNN-LSTM and GRU based health feature parameters for lithium-ion batteries SOH estimation [J]. Energy Storage Science and Technology, 2022, 11(5): 1641-1649. |
[13] | Chunjing LIN, Danhua LI, Haoran WEN, Tianyi MA, Hong CHANG, Peixiang CHANG, Haiqiang LI, Shiqiang LIU. Research on swelling force characteristics of power battery during charging [J]. Energy Storage Science and Technology, 2022, 11(5): 1627-1633. |
[14] | Qiaomin KE, Jian GUO, Yiwei WANG, Wenjiong CAO, Man CHEN, Fangming JIANG. The effect of liquid-cooled thermal management on thermal runaway of power battery [J]. Energy Storage Science and Technology, 2022, 11(5): 1634-1640. |
[15] | Zhenkai HU, Bo LEI, Yongqi LI, Youjie SHI, Qikai LEI, Zhipeng HE. Comparative study on safety test and evaluation methods of lithium-ion batteries for energy storage [J]. Energy Storage Science and Technology, 2022, 11(5): 1650-1656. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||