Energy Storage Science and Technology ›› 2021, Vol. 10 ›› Issue (6): 2411-2427.doi: 10.19799/j.cnki.2095-4239.2021.0550
• Research Highlight • Previous Articles Next Articles
Hongxiang JI(), Zhou JIN, Mengyu TIAN, Yida WU, Yuanjie ZHAN, Feng TIAN, Yong YAN, Guanjun CEN, Ronghan QIAO, Xiaoyu SHEN, Jing ZHU, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG()
Received:
2021-10-20
Revised:
2021-10-22
Online:
2021-11-05
Published:
2021-11-03
CLC Number:
Hongxiang JI, Zhou JIN, Mengyu TIAN, Yida WU, Yuanjie ZHAN, Feng TIAN, Yong YAN, Guanjun CEN, Ronghan QIAO, Xiaoyu SHEN, Jing ZHU, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Aug. 1, 2021 to Sept. 30, 2021)[J]. Energy Storage Science and Technology, 2021, 10(6): 2411-2427.
1 | LEVARTOVSKY Y, CHAKRABORTY A, KUNNIKURUVAN S, et al. Enhancement of structural, electrochemical, and thermal properties of high-energy density Ni-rich LiNi0.85Co0.1Mn0.05O2 cathode materials for Li-ion batteries by niobium doping[J]. ACS Applied Materials & Interfaces, 2021, 13(29): 34145-34156. |
2 | ARIBIA A, SASTRE J, CHEN X, et al. In situ lithiated ald niobium oxide for improved long term cycling of layered oxide cathodes: A thin-film model study[J]. Journal of the Electrochemical Society, 2021, 168(4): doi: 10.26434/chemrxiv.13568366. |
3 | RYU H H, NAMKOONG B, KIM J H, et al. Capacity fading mechanisms in Ni-rich single-crystal NCM cathodes[J]. ACS Energy Letters, 2021, 6(8): 2726-2734. |
4 | FAN X M, OU X, ZHAO W G, et al. In situ inorganic conductive network formation in high-voltage single-crystal Ni-rich cathodes[J]. Nature Communications, 2021, 12: doi: 10.1038/s41467-021-25611-6. |
5 | PARK C W, LEE J H, SEO J K, et al. Graphene collage on Ni-rich layered oxide cathodes for advanced lithium-ion batteries[J]. Nature Communications, 2021, 12(1): doi: 10.1038/s41467-021-22403-w. |
6 | LEE J, YANG Y, JEONG M, et al. Superior rate capability and cycling stability in partially cation-disordered co-free Li-rich layered materials enabled by an initial activation process[J]. Chemistry of Materials, 2021, 33(13): 5115-5126. |
7 | CHEN Q, PEI Y, CHEN H, et al. Highly reversible oxygen redox in layered compounds enabled by surface polyanions[J]. Nature Communications, 2020, 11(1): doi: 10.1038/s41467-020-17126-3. |
8 | ZHANG J, WANG Q, LI S, et al. Depth-dependent valence stratification driven by oxygen redox in lithium-rich layered oxide[J]. Nature Communications, 2020, 11(1): doi: 10.1038/s41467-020-20198-w. |
9 | WANG Y Y, WANG Y Y, LIU S, et al. Building the stable oxygen framework in high-Ni layered oxide cathode for high-energy-density Li-ion batteries[J]. Energy & Environmental Materials, 2021, doi: 10.1002/eem2.12242. |
10 | DIAZ-LOPEZ M, CHATER P A, JOLY Y, et al. Correction: Reversible densification in nano-Li2MnO3 cation disordered rock-salt Li-ion battery cathodes[J]. Journal of Materials Chemistry A, 2020, 8(25): doi: 10.1039/d0ta03372c. |
11 | CAO S, WU C, XIE X, et al. Suppressing the voltage decay based on a distinct stacking sequence of oxygen atoms for Li-rich cathode materials[J]. ACS Applied Materials & Interfaces, 2021, 13(15): 17639-17648. |
12 | KIM M, JEONG M, YOON W S, et al. Ultrafast kinetics in a phase separating electrode material by forming an intermediate phase without reducing the particle size[J]. Energy & Environmental Science, 2020, 13(11): 4258-4268. |
13 | STOLZ L, HOMANN G, WINTER M, et al. Area oversizing of lithium metal electrodes in solid-state batteries: Relevance for overvoltage and thus performance?[J]. ChemSusChem, 2021, 14(10): 2163-2169. |
14 | WELDEYOHANNES H H, ABRHA L H, NIKODIMOS Y, et al. Guiding lithium-ion flux to avoid cell's short circuit and extend cycle life for an anode-free lithium metal battery[J]. Journal of Power Sources, 2021, 506: doi: 10.1016/j.jpowsour.2021.230204. |
15 | ARIYOSHI K, INO T, YAMADA Y. Effect of electronic conductivity on the polarization behavior of Li[Li1/3Ti5/3]O4 electrodes[J]. Journal of the Electrochemical Society, 2021, 168(7): doi: 10.1149/1945-7111/ac163f. |
16 | ZHOU M H, LIU R L, JIA D Y, et al. Ultrathin yet robust single lithium-ion conducting quasi-solid-state polymer-brush electrolytes enable ultralong-life and dendrite-free lithium-metal batteries[J]. Advanced Materials, 2021, 33(29): doi: 10.1002/adma.202100943. |
17 | HAN X, WANG S Y, XU Y B, et al. All solid thick oxide cathodes based on low temperature sintering for high energy solid batteries[J]. Energy & Environmental Science, 2021, 14(9): 5044-5056. |
18 | CHENG D J, ZHOU X Q, HU H Y, et al. Electrochemical storage mechanism of sodium in carbon materials: A study from soft carbon to hard carbon[J]. Carbon, 2021, 182: 758-769. |
19 | NAGATA H, AKIMOTO J. Excellent deformable oxide glass electrolytes and oxide-type all-solid-state Li2S-Si batteries employing these electrolytes[J]. ACS Applied Materials & Interfaces, 2021, 13(30): 35785-35794. |
20 | XU R, XIAO B, XUAN C, et al. Facile and powerful in situ polymerization strategy for sulfur-based all-solid polymer electrolytes in lithium batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(29): 34274-34281. |
21 | ZHENG J, SUN C, WANG Z, et al. Double ionic-electronic transfer interface layers for all-solid-state lithium batteries[J]. Angewandte Chemie International Edition, 2021, 60(34): 18448-18453. |
22 | LUO D, ZHENG L, ZHANG Z, et al. Constructing multifunctional solid electrolyte interface via in situ polymerization for dendrite-free and low N/P ratio lithium metal batteries[J]. Nature Communications, 2021, 12(1): doi: 10.1038/s41467-020-20339-1. |
23 | HUO H, GAO J, ZHAO N, et al. A flexible electron-blocking interfacial shield for dendrite-free solid lithium metal batteries[J]. Nature Communications, 2021, 12(1): doi: 10.1038/s41467-020-20463-y. |
24 | SUN H, XIE X, HUANG Q, et al. Fluorinated poly-oxalate electrolytes stabilizing both anode and cathode interfaces for all-solid-state Li/NMC811 batteries[J]. Angewandte Chemie, 2021, 60(33): 18335-18343. |
25 | ZHAO B, WU J, WANG Z X, et al. Incorporation of lithium halogen in Li7P3S11 glass-ceramic and the interface improvement mechanism[J]. Electrochimica Acta, 2021, 390: doi: 10.1016/j.electacta.2021.138849. |
26 | TAKAHASHI M, WATANABE T, YAMAMOTO K, et al. Investigation of the suppression of dendritic lithium growth with a lithium-iodide-containing solid electrolyte[J]. Chemistry of Materials, 2021, 33(13): 4907-4914. |
27 | WANG Q, YAO Z, ZHAO C, et al. Interface chemistry of an amide electrolyte for highly reversible lithium metal batteries[J]. Nature Communications, 2020, 11(1): doi: 10.1038/s41467-020-17976-x. |
28 | GUO D L, YANG M K, LI Y C, et al. Hydrogel-derived VPO4/porous carbon framework for enhanced lithium and sodium storage[J]. Nanoscale, 2020, 12(6): 3812-3819. |
29 | CHEN J, ZHAO C, XUE D, et al. Lithium deposition-induced fracture of carbon nanotubes and its implication to solid-state batteries[J]. Nano letters, 2021, 21(16): 6859-6866. |
30 | CHEN Z, KIM G T, KIM J K, et al. Highly stable quasi-solid-state lithium metal batteries: Reinforced Li1.3Al0.3Ti1.7(PO4)3/Li interface by a protection interlayer[J]. Advanced Energy Materials, 2021, 11(30): doi: 10.1002/aenm.202101339. |
31 | CHEN Y, HUO F, CHEN S M, et al. In-built quasi-solid-state poly-ether electrolytes enabling stable cycling of high-voltage and wide-temperature Li metal batteries[J]. Advanced Functional Materials, 2021, 31(36): doi: 10.1002/adfm.202102347. |
32 | NIU C Q, LUO W J, DAI C M, et al. High-voltage-tolerant covalent organic framework electrolyte with holistically oriented channels for solid-state lithium metal batteries with nickel-rich cathodes[J]. Angewandte Chemie International Edition, 2021, doi: 10.1002/anie.202107444. |
33 | KIM S Y, KAUP K, PARK K H, et al. Lithium ytterbium-based halide solid electrolytes for high voltage all-solid-state batteries[J]. ACS Materials Letters, 2021, 3(7): 930-938. |
34 | JIANG Z, PENG H L, LIU Y, et al. A versatile Li6.5In0.25P0.75S5I sulfide electrolyte triggered by ultimate-energy mechanical alloying for all-solid-state lithium metal batteries[J]. Advanced Energy Materials, 2021, 11(36): doi: 10.1002/aenm.202101521. |
35 | MAUGHAN A E, HA Y, PEKAREK R T, et al. Lowering the activation barriers for lithium-ion conductivity through orientational disorder in the cyanide argyrodite Li6PS5CN[J]. Chemistry of Materials, 2021, 33(13): 5127-5136. |
36 | WANG K, REN Q, GU Z, et al. A cost-effective and humidity-tolerant chloride solid electrolyte for lithium batteries[J]. Nature Communications, 2021, 12(1): doi: 10.1038/s41467-021-24697-2. |
37 | SEIDL L, GRISSA R, ZHANG L T, et al. Unraveling the voltage-dependent oxidation mechanisms of poly(ethylene oxide)-based solid electrolytes for solid-state batteries[J]. Advanced Materials Interfaces, 2021, doi: 10.1002/admi.202100704. |
38 | KIM M J, CHOI I H, JO S C, et al. A novel strategy to overcome the hurdle for commercial all-solid-state batteries via low-cost synthesis of sulfide solid electrolytes[J]. Small Methods, 2021: doi: 10.1002/smtd.202100793. |
39 | MARCHINI F, PORCHERON B, ROUSSE G, et al. The hidden side of nanoporous β-Li3PS4 solid electrolyte[J]. Advanced Energy Materials, 2021, 11(34): doi: 10.1002/aenm.202101111. |
40 | MENKIN S, O'KEEFE C A, GUNNARSDÓTTIR A B, et al. Toward an understanding of SEI formation and lithium plating on copper in anode-free batteries[J]. The Journal of Physical Chemistry C, 2021, 125(30): 16719-16732. |
41 | CAO Z, ZHENG X Y, QU Q T, et al. Electrolyte design enabling a high-safety and high-performance Si anode with a tailored electrode-electrolyte interphase[J]. Advanced Materials, 2021, 33(38): doi: 10.1002/adma.202103178. |
42 | GU Y X, FANG S H, YANG L, et al. A non-flammable electrolyte for long-life lithium ion batteries operating over a wide-temperature range[J]. Journal of Materials Chemistry A, 2021, 9(27): 15363-15372. |
43 | WU F L, FANG S, KUENZEL M, et al. Dual-anion ionic liquid electrolyte enables stable Ni-rich cathodes in lithium-metal batteries[J]. Joule, 2021, 5(8): 2177-2194. |
44 | WANG Z X, SUN Z H, SHI Y, et al. Lithium metal batteries: Ion-dipole chemistry drives rapid evolution of Li ions solvation sheath in low-temperature Li batteries[J]. Advanced Energy Materials, 2021, 11(28): doi: 10.1002/aenm. 202170112. |
45 | ROY B, CHEREPANOV P, NGUYEN C, et al. Lithium borate ester salts for electrolyte application in next-generation high voltage lithium batteries[J]. Advanced Energy Materials, 2021, 11(36): doi: 10.1002/aenm.202101422. |
46 | JIN C B, ZHANG X Q, SHENG O W, et al. Reclaiming inactive lithium with a triiodide/iodide redox couple for practical lithium metal batteries[J]. Angewandte Chemie International Edition, 2021, 60(42): 22990-22995. |
47 | LI X, LIU J D, HE J, et al. Hexafluoroisopropyl trifluoromethanesulfonate-driven easily Li+ desolvated electrolyte to afford Li||NCM811 cells with efficient anode/cathode electrolyte interphases[J]. Advanced Functional Materials, 2021, 31(37): doi: 10.1002/adfm.202104395. |
48 | MENG J, ZHANG Y, ZHOU X, et al. Li2CO3-affiliative mechanism for air-accessible interface engineering of garnet electrolyte via facile liquid metal painting[J]. Nature Communications, 2020, 11(1): doi: 10.1038/s41467-020-17493-x. |
49 | WANG C H, LIANG J W, JIANG M, et al. Interface-assisted in situ growth of halide electrolytes eliminating interfacial challenges of all-inorganic solid-state batteries[J]. Nano Energy, 2020, 76: doi: 10.1016/j.nanoen.2020.105015. |
50 | SPENCER JOLLY D, NING Z Y, HARTLEY G O, et al. Temperature dependence of lithium anode voiding in argyrodite solid-state batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(19): 22708-22716. |
51 | HÄNSEL C, SINGH B, KIWIC D, et al. Favorable interfacial chemomechanics enables stable cycling of high-Li-content Li-in/Sn anodes in sulfide electrolyte-based solid-state batteries[J]. Chemistry of Materials, 2021, 33(15): 6029-6040. |
52 | LEE J, LEE T, CHAR K, et al. Issues and advances in scaling up sulfide-based all-solid-state batteries[J]. Accounts of Chemical Research, 2021, 54(17): 3390-3402. |
53 | YUAN C H, LU W Q, XU J. Unlocking the electrochemical-mechanical coupling behaviors of dendrite growth and crack propagation in all-solid-state batteries[J]. Advanced Energy Materials, 2021, 11(36): doi: 10.1002/aenm.202101807. |
54 | AMORES M, EL-SHINAWI H, MCCLELLAND I, et al. Li1.5La1.5MO6 (M = W6+, Te6+) as a new series of lithium-rich double perovskites for all-solid-state lithium-ion batteries[J]. Nature Communications, 2020, 11: doi: 10.1038/s41467-020-19815-5. |
55 | WANG M J, CARMONA E, GUPTA A, et al. Enabling "lithium-free" manufacturing of pure lithium metal solid-state batteries through in situ plating[J]. Nature Communications, 2020, 11(1): doi: 10.1038/s41467-020-19004-4. |
56 | ZHENG C, ZHANG J, XIA Y, et al. Unprecedented self-healing effect of Li6PS5Cl-based all-solid-state lithium battery[J]. Small, 2021, doi: 10.1002/smll.202101326. |
57 | SU Y B, YE L H, FITZHUGH W, et al. A more stable lithium anode by mechanical constriction for solid state batteries[J]. Energy & Environmental Science, 2020, 13(3): 908-916. |
58 | SUYAMA M, YUBUCHI S, DEGUCHI M, et al. Importance of Li-metal/sulfide electrolyte interphase ionic conductivity in suppressing short-circuiting of all-solid-state Li-metal batteries[J]. Journal of the Electrochemical Society, 2021, 168(6): doi: 10.1149/1945-7111/ac0995. |
59 | RAJENDRAN S, PILLI A, OMOLERE O, et al. An all-solid-state battery with a tailored electrode-electrolyte interface using surface chemistry and interlayer-based approaches[J]. Chemistry of Materials, 2021, 33(9): 3401-3412. |
60 | NIU C J, LIU D Y, LOCHALA J A, et al. Balancing interfacial reactions to achieve long cycle life in high-energy lithium metal batteries[J]. Nature Energy, 2021, 6(7): 723-732. |
61 | HAN Y, JUNG S H, KWAK H, et al. Single- or poly-crystalline Ni-rich layered cathode, sulfide or halide solid electrolyte: Which will be the winners for all-solid-state batteries?[J]. Advanced Energy Materials, 2021, 11(21): doi: 10.1002/aenm.202100126. |
62 | WANG L L, SUN X W, MA J, et al. Bidirectionally compatible buffering layer enables highly stable and conductive interface for 4.5 V sulfide-based all-solid-state lithium batteries[J]. Advanced Energy Materials, 2021, 11(32): doi: 10.1002/aenm.202100881. |
63 | YANG Y N, JIANG F L, LI Y Q, et al. A surface coordination interphase stabilizes a solid-state battery[J]. Angewandte Chemie International Edition, 2021, doi: 10.1002/anie.202111739. |
64 | DAVIS A L, GOEL V, LIAO D W, et al. Rate limitations in composite solid-state battery electrodes: Revealing heterogeneity with operando microscopy[J]. ACS Energy Letters, 2021, 6(8): 2993-3003. |
65 | DOERRER C, CAPONE I, NARAYANAN S, et al. High energy density single-crystal NMC/Li6PS5Cl cathodes for all-solid-state lithium-metal batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(31): 37809-37815. |
66 | CHEN F, ZHANG Y L, HU Q, et al. S/MWCNt/LLZO composite electrode with e-/S/Li+ conductive network for all-solid-state lithium-sulfur batteries[J]. Journal of Solid State Chemistry, 2021, 301: doi: 10.1016/j.jssc.2021.122341. |
67 | LOU S F, LIU Q W, ZHANG F, et al. Insights into interfacial effect and local lithium-ion transport in polycrystalline cathodes of solid-state batteries[J]. Nature Communications, 2020, 11: doi: 10.1038/s41467-020-19528-9. |
68 | CHEN P Y, YAN C, CHEN P Y, et al. Selective permeable lithium-ion channels on lithium metal for practical lithium-sulfur pouch cells[J]. Angewandte Chemie International Edition, 2021, 60(33): 18031-18036. |
69 | LIU T, LI H J, YUE J M, et al. Ultralight electrolyte for high-energy lithium-sulfur pouch cells[J]. Angewandte Chemie International Edition, 2021, 60(32): 17547-17555. |
70 | ALESHIN A, BRAVO S, REDQUEST K, et al. Rapid oxidation and reduction of lithium for improved cycling performance and increased homogeneity[J]. ACS Applied Materials & Interfaces, 2021, 13(2): 2654-2661. |
71 | BARAN M J, CARRINGTON M E, SAHU S, et al. Diversity-oriented synthesis of polymer membranes with ion solvation cages[J]. Nature, 2021, 592(7853): 225-231. |
72 | YANG J L, CAI D Q, HAO X G, et al. Rich heterointerfaces enabling rapid polysulfides conversion and regulated Li2S deposition for high-performance lithium–sulfur batteries[J]. ACS Nano, 2021, 15(7): 11491-11500. |
73 | YE L, LIAO M, CHENG X R, et al. Lithium-metal anodes working at 60 mA/cm2 and 60 mA·h/cm2 through nanoscale lithium-ion adsorbing[J]. Angewandte Chemie International Edition, 2021, 60(32): 17419-17425. |
74 | YAMAMOTO M, GOTO S, TANG R, et al. Nano-confinement of insulating sulfur in the cathode composite of all-solid-state Li-S batteries using flexible carbon materials with large pore volumes[J]. ACS Applied Materials & Interfaces, 2021, 13(32): 38613-38622. |
75 | ZHANG H, ONO L K, TONG G Q, et al. Long-life lithium-sulfur batteries with high areal capacity based on coaxial CNTs@TiN-TiO2 sponge[J]. Nature Communications, 2021, 12: doi: 10.1038/s41467-021-24976-y. |
76 | WANG N, ZHANG X, JU Z, et al. Thickness-independent scalable high-performance Li-S batteries with high areal sulfur loading via electron-enriched carbon framework[J]. Nature Communications, 2021, 12(1): doi: 10.1038/s41467-021-24873-4. |
77 | QIN B, CAI Y F, SI X Q, et al. All-in-one sulfur host: Smart controls of architecture and composition for accelerated liquid-solid redox conversion in lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(33): 39424-39434. |
78 | FAN Q N, JIANG J C, ZHANG S L, et al. Accelerated polysulfide redox in binder-free Li2 S cathodes promises high-energy-density lithium-sulfur batteries[J]. Advanced Energy Materials, 2021, 11(32): doi: 10.1002/aenm.202100957. |
79 | JOBST N M, GABRIELLI G, AXMANN P, et al. Compensation of the irreversible loss of Si-anodes via prelithiated NMC/LMO blend cathode[J]. Journal of the Electrochemical Society, 2021, 168(7): doi: 10.1149/1945-7111/ac15b7. |
80 | CHEN H, YANG Y F, BOYLE D T, et al. Free-standing ultrathin lithium metal-graphene oxide host foils with controllable thickness for lithium batteries[J]. Nature Energy, 2021, 6(8): 790-798. |
81 | WU J Y, JU Z Y, ZHANG X, et al. Ultrahigh-capacity and scalable architected battery electrodes via tortuosity modulation[J]. ACS Nano, 2021, doi: 10.1021/acsnano.1c06491. |
82 | ARAKI C, TSUBOUCHI S, NOIE A, et al. Thickness dependence of resistance components of a LiNixCoyMn1-x-yO2-Based positive electrode for lithium ion batteries[J]. Journal of the Electrochemical Society, 2021, 168(4): doi: 10.1149/1945-7111/abf0d9. |
83 | LI J Z, LI S F, ZHANG Y X, et al. Multiphase, multiscale chemomechanics at extreme low temperatures: Battery electrodes for operation in a wide temperature range[J]. Advanced Energy Materials, 2021, 11(37): doi: 10.1002/aenm.202170143. |
84 | LI J Y, HUANG J X, LI H Y, et al. Insight into the redox reaction heterogeneity within secondary particles of nickel-rich layered cathode materials[J]. ACS Applied Materials & Interfaces, 2021, 13(23): 27074-27084. |
85 | WANG L, XIE R, CHEN B, et al. In-situ visualization of the space-charge-layer effect on interfacial lithium-ion transport in all-solid-state batteries[J]. Nature Communications, 2020, 11(1): doi: 10.1038/s41467-020-19726-5. |
86 | FAWDON J, IHLI J, MANTIA F, et al. Characterising lithium-ion electrolytes via operando Raman microspectroscopy[J]. Nature Communications, 2021, 12(1): doi: 10.1038/s41467-021-24297-0. |
87 | WANG X, PAWAR G, LI Y, et al. Glassy Li metal anode for high-performance rechargeable Li batteries[J]. Nature Materials, 2020, 19(12): 1339-1345. |
88 | HÖLTSCHI L, BORCA C N, HUTHWELKER T, et al. Performance-limiting factors of graphite in sulfide-based all-solid-state lithium-ion batteries[J]. Electrochimica Acta, 2021, 389: doi: 10.1016/j.electacta.2021.138735. |
89 | CONFORTO G, RUESS R, SCHRÖDER D, et al. Editors' choice-quantification of the impact of chemo-mechanical degradation on the performance and cycling stability of NCM-based cathodes in solid-state Li-ion batteries[J]. Journal of the Electrochemical Society, 2021, doi: 10.1149/1945-7111/ac13d2. |
90 | CHAE B G, PARK S Y, SONG J H, et al. Evolution and expansion of Li concentration gradient during charge-discharge cycling[J]. Nature Communications, 2021, 12: doi: 10.1038/s41467-021-24120-w. |
91 | PARK J, BAE K T, KIM D, et al. Unraveling the limitations of solid oxide electrolytes for all-solid-state electrodes through 3D digital twin structural analysis[J]. Nano Energy, 2021, 79: doi: 10.1016/j.nanoen.2020.105456. |
92 | HOPE M A, RINKEL B L D, GUNNARSDÓTTIR A B, et al. Selective NMR observation of the SEI-metal interface by dynamic nuclear polarisation from lithium metal[J]. Nature Communications, 2020, 11: doi: 10.1038/s41467-020-16114-x. |
93 | SPINGLER F B, KÜCHER S, PHILLIPS R, et al. Electrochemically stable in situ dilatometry of NMC, NCA and graphite electrodes for lithium-ion cells compared to XRD measurements[J]. Journal of the Electrochemical Society, 2021, 168(4): doi: 10.1149/1945-7111/abf262. |
94 | BIRKHOLZ O, KAMLAH M. Electrochemical modeling of hierarchically structured lithium-ion battery electrodes[J]. Energy Technology, 2021, 9(6): doi: 10.1002/ente.202000910. |
95 | KIM S Y, PARK C S, HOSSEINI S, et al. Inhibiting oxygen release from Li-rich, Mn-rich layered oxides at the surface with a solution processable oxygen scavenger polymer[J]. Advanced Energy Materials, 2021, 11(30): doi: 10.1002/aenm.202100552. |
96 | BESLI M M, USUBELLI C, SUBBARAMAN A, et al. Location-dependent cobalt deposition in smartphone cells upon long-term fast-charging visualized by synchrotron X-ray fluorescence[J]. Chemistry of Materials, 2021, 33(16): 6318-6328. |
97 | LIU T F, ZHENG J L, HU H L, et al. In-situ construction of a Mg-modified interface to guide uniform lithium deposition for stable all-solid-state batteries[J]. Journal of Energy Chemistry, 2021, 55: 272-278. |
98 | LI S Q, ZHOU W Y, XIA X G, et al. Binder-free electrodes with high energy density and excellent flexibility enabled by hierarchical configuration for wearable lithium ion batteries[J]. Advanced Materials Technologies, 2021, 6(8): doi: 10.1002/admt.202001262. |
99 | ANDRITSOS E I, LEKAKOU C, CAI Q. Single-atom catalysts as promising cathode materials for lithium-sulfur batteries[J]. The Journal of Physical Chemistry C, 2021, 125(33): 18108-18118. |
100 | KWON H, LEE J H, ROH Y, et al. An electron-deficient carbon current collector for anode-free Li-metal batteries[J]. Nature Communications, 2021, 12: doi: 10.1038/s41467-021-25848-1. |
[1] | Xiongwen XU, Yang NIE, Jian TU, Zheng XU, Jian XIE, Xinbing ZHAO. Abuse performance of pouch-type Na-ion batteries based on Prussian blue cathode [J]. Energy Storage Science and Technology, 2022, 11(7): 2030-2039. |
[2] | Yingwei PEI, Hong ZHANG, Xinghui WANG. Recent advances in the electrolytes of rechargeable zinc-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(7): 2075-2082. |
[3] | Sida HUO, Wendong XUE, Xinli LI, Yong LI. Visualization analysis of composite electrolytes for lithium battery based on CiteSpace [J]. Energy Storage Science and Technology, 2022, 11(7): 2103-2113. |
[4] | Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2022 to May 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(7): 2007-2022. |
[5] | ZHANG Yan, WANG Hai, LIU Zhaomeng, ZHANG Deliu, WANG Jiadong, LI Jianzhong, GAO Xuanwen, LUO Wenbin. Research progress of nickel-rich ternary cathode material ncm for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1693-1705. |
[6] | OU Yu, HOU Wenhui, LIU Kai. Research progress of smart safety electrolytes in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1772-1787. |
[7] | ZHOU Weidong, HUANG Qiu, XIE Xiaoxin, CHEN Kejun, LI Wei, QIU Jieshan. Research progress of polymer electrolyte for solid state lithium batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1788-1805. |
[8] | LI Yitao, SHEN Kaier, PANG Quanquan. Advance in organics enhanced sulfide-based solid-state batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1902-1918. |
[9] | ZHOU Wei, FU Dongju, LIU Weifeng, CHEN Jianjun, HU Zhao, ZENG Xierong. Research progress on recycling technology of waste lithium iron phosphate power battery [J]. Energy Storage Science and Technology, 2022, 11(6): 1854-1864. |
[10] | Ronghan QIAO, Guanjun CEN, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Feb. 1, 2022 to Mar. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(5): 1289-1304. |
[11] | Maolin FANG, Ying ZHANG, Lin QIAO, Shumin LIU, Zhongqi CAO, Huamin ZHANG, Xiangkun MA. Research progress of iron-chromium flow batteries technology [J]. Energy Storage Science and Technology, 2022, 11(5): 1358-1367. |
[12] | Chaochao WEI, Chuang YU, Zhongkai WU, Linfeng PENG, Shijie CHENG, Jia XIE. Research progress of Li3PS4 solid electrolyte [J]. Energy Storage Science and Technology, 2022, 11(5): 1368-1382. |
[13] | Honghui WANG, Zeqin WU, Deren CHU. Thermal behavior of lithium titanate based Li ion batteries under slight over-discharging condition [J]. Energy Storage Science and Technology, 2022, 11(5): 1305-1313. |
[14] | Zhicheng CHEN, Zongxu LI, Ling CAI, Yisi LIU. Development status and future prospects of flexible metal-air batteries [J]. Energy Storage Science and Technology, 2022, 11(5): 1401-1410. |
[15] | Xinyi WANG, Weijie LI, Chao HAN, Huakun LIU, Shixue DOU. Challenges and optimization strategies of the anode of aqueous zinc-ion battery [J]. Energy Storage Science and Technology, 2022, 11(4): 1211-1225. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||