Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (5): 1322-1330.doi: 10.19799/j.cnki.2095-4239.2021.0554
• Energy Storage Materials and Devices • Previous Articles Next Articles
Liangtao XIONG1(), Jifen WANG2(), Huaqing XIE2, Xuelai ZHANG1()
Received:
2021-10-22
Revised:
2021-11-18
Online:
2022-05-05
Published:
2022-05-07
Contact:
Jifen WANG, Xuelai ZHANG
E-mail:1063920501@qq.com;wangjifen@sspu.edu.cn;xlzhang@shmtu.edu.cn
CLC Number:
Liangtao XIONG, Jifen WANG, Huaqing XIE, Xuelai ZHANG. Effect of vacancy defects on thermal conductivity of single-layer graphene by molecular dynamics[J]. Energy Storage Science and Technology, 2022, 11(5): 1322-1330.
1 | NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. |
2 | ZHANG S, ZHANG J. Fatigue and its effect on the mechanical and thermal transport properties of polycrystalline graphene[J]. Journal of Materials Science, 2021, 56(17): 10367-10381. |
3 | SLOTA M, KEERTHI A, MYERS W K, et al. Magnetic edge states and coherent manipulation of graphene nanoribbons[J]. Nature, 2018, 557(7707): 691-695. |
4 | NAIR R R, BLAKE P, GRIGORENKO A N, et al. Fine structure constant defines visual transparency of graphene[J]. Science, 2008, 320(5881): 1308. |
5 | GHOSH S, CALIZO I, TEWELDEBRHAN D, et al. Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits[J]. Applied Physics Letters, 2008, 92(15): 151911. |
6 | WU R, ZHU R Z, ZHAO S H, et al. Filling the gap: Thermal properties and device applications of graphene[J]. Science China-Information Sciences, 2021, 64(4): 140401. |
7 | ZHUO L Q, FAN P P, ZHANG S, et al. High-performance fiber-integrated multifunctional graphene-optoelectronic device with photoelectric detection and optic-phase modulation[J]. Photonics Research, 2020, 8(12): 1949. |
8 | WANG R R, MAO Y, WANG L, et al. Solution-gated graphene transistor based sensor for histamine detection with gold nanoparticles decorated graphene and multi-walled carbon nanotube functionalized gate electrodes[J]. Food Chemistry, 2021, 347: 128980. |
9 | JING P, WANG Q, WANG B Y, et al. Encapsulating yolk-shell FeS2@carbon microboxes into interconnected graphene framework for ultrafast lithium/sodium storage[J]. Carbon, 2020, 159: 366-377. |
10 | KRASAVIN S E, OSIPOV V A. Effect of Stone-Wales defects on the thermal conductivity of graphene[J]. Journal of Physics Condensed Matter: an Institute of Physics Journal, 2015, 27(42): 425302. |
11 | DAMASCENO D A, RAJAPAKSE R K N D, MESQUITA E, et al. Atomistic simulation of tensile strength properties of graphene with complex vacancy and topological defects[J]. Acta Mechanica, 2020, 231(8): 3387-3404. |
12 | WANG J F, XIE H Q, GUO Z X. First-principles investigation on thermal properties and infrared spectra of imperfect graphene[J]. Applied Thermal Engineering, 2017, 116: 456-462. |
13 | LIU D J, YANG P, YUAN X, et al. The defect location effect on thermal conductivity of graphene nanoribbons based on molecular dynamics[J]. Physics Letters A, 2015, 379(9): 810-814. |
14 | YANG B, LI D B, YANG H Y, et al. Thermal conductivity enhancement of defective graphene nanoribbons[J]. International Communications in Heat and Mass Transfer, 2020, 117: 104735. |
15 | SUN R, LI L L, FENG C, et al. Tensile behavior of polymer nanocomposite reinforced with graphene containing defects[J]. European Polymer Journal, 2018, 98: 475-482. |
16 | PLIMPTON S. Fast parallel algorithms for short-range molecular dynamics[J]. Journal of Computational Physics, 1995, 117(1): 1-19. |
17 | LINDSAY L, BROIDO D A. Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene[J]. Physical Review B, 2010, 81(20): 205441. |
18 | YANG B W, HAN D, WANG X Y, et al. Molecular dynamic simulation of thermal transport in monolayer C3BxN1– x alloy[J]. Nanotechnology, 2020, 31(18): 185404. |
19 | 吴霜, 王继芬, 王绪哲, 等. 石墨烯纳米带导热的分子动力学模拟[J]. 上海第二工业大学学报, 2019, 36(4): 269-274. |
WU S, WANG J F, WANG X Z, et al. Thermal conductivity of graphene nanoribbons by molecular dynamics simulations[J]. Journal of Shanghai Polytechnic University, 2019, 36(4): 269-274. | |
20 | ZHANG Y Y, CHENG Y, PEI Q X, et al. Thermal conductivity of defective graphene[J]. Physics Letters A, 2012, 376(47/48): 3668-3672. |
21 | LI Z, XIONG S Y, SIEVERS C, et al. Influence of thermostatting on nonequilibrium molecular dynamics simulations of heat conduction in solids[J]. The Journal of Chemical Physics, 2019, 151(23): 234105. |
22 | 唐恺. 石墨烯热学特性的分子动力学模拟[D]. 武汉: 华中科技大学, 2015. |
TANG K. Molecular dynamics simulations on thermal properties of graphene[D]. Wuhan: Huazhong University of Science and Technology, 2015. | |
23 | 李婷. 石墨烯和六方氮化硼界面热特性的研究[D]. 大连: 大连理工大学, 2018. |
LI T. A study on the interfacial thermal performance of graphene and hexagonal boron nitride[D]. Dalian: Dalian University of Technology, 2018. | |
24 | SCHELLING P K, PHILLPOT S R, KEBLINSKI P. Comparison of atomic-level simulation methods for computing thermal conductivity[J]. Physical Review B, 2002, 65(14): 144306. |
25 | WU X S, TANG W T, XU X F, et al. Recent progresses of thermal conduction in two-dimensional materials[J]. Acta Physica Sinica, 2020, 69(19): 196602. |
26 | MORTAZAVI B, AHZI S. Thermal conductivity and tensile response of defective graphene: A molecular dynamics study[J]. Carbon, 2013, 63: 460-470. |
27 | HAO F, FANG D N, XU Z P. Mechanical and thermal transport properties of graphene with defects[J]. Applied Physics Letters, 2011, 99(4): 041901. |
28 | LIANG T, ZHOU M, ZHANG P, et al. Multilayer in-plane graphene/hexagonal boron nitride heterostructures: Insights into the interfacial thermal transport properties[J]. International Journal of Heat and Mass Transfer, 2020, 151: 119395. |
29 | CHEN J, WALTHER J H, KOUMOUTSAKOS P. Strain engineering of kapitza resistance in few-layer graphene[J]. Nano Letters, 2014, 14(2): 819-825. |
30 | SONG J R, XU Z H, HE X D, et al. Thermal conductivity of two-dimensional BC3: A comparative study with two-dimensional C3N[J]. Physical Chemistry Chemical Physics, 2019, 21(24): 12977-12985. |
31 | YE Z Q, CAO B Y, GUO Z Y, et al. Study on thermal characteristics of phonons in graphene[J]. Acta Physica Sinica, 2014, 63(15): 154704. |
[1] | Haitao LI, Lingli KONG, Xin ZHANG, Chuanjun YU, Jiwei WANG, Lin XU. The effects of N/P design on the performances of Ni-rich NCM/Gr lithium ion battery [J]. Energy Storage Science and Technology, 2022, 11(7): 2040-2045. |
[2] | Wenlan YE, Ming ZHAO, Mingyu HU, Yang TIAN. Analysis of heat storage and release performance of tube bundle phase change heat accumulator [J]. Energy Storage Science and Technology, 2022, 11(7): 2151-2160. |
[3] | HAN Junwei, XIAO Jing, TAO Ying, KONG Debin, LV Wei, YANG Quanhong. Compact energy storage: Methodology with graphenes and the applications [J]. Energy Storage Science and Technology, 2022, 11(6): 1865-1873. |
[4] | WANG Yuzuo, DENG Miao, WANG Jin, YANG Bin, LU Yinli, JIN Ge, RUAN Dianbo. Study on the effects of carbonization temperature on lithium-storage kinetics for soft carbon [J]. Energy Storage Science and Technology, 2022, 11(6): 1715-1724. |
[5] | Guangyu CHENG, Xinwei LIU, Yueni MEI, Honghui GU, Cheng YANG, Ke WANG. Capacity fading analysis of lithium-ion battery after high temperature storage [J]. Energy Storage Science and Technology, 2022, 11(5): 1339-1349. |
[6] | Suhang WANG, Jianlin LI, Yaxin LI, Junjie XIONG, Wei ZENG. Research on charging strategy of lithium-ion battery system at low temperature [J]. Energy Storage Science and Technology, 2022, 11(5): 1537-1542. |
[7] | Jinpeng HAO, Yingchun DU, Hong WU, Kun HE, Lei WANG. Numerical investigation of electrohydrodynamic solid-liquid phase change in square enclosure with sinusoidal temperature distribution [J]. Energy Storage Science and Technology, 2022, 11(5): 1446-1454. |
[8] | Xinyu ZHOU, Daocheng LUAN, Zhihua HU, Junhua LING, Kelin WEN, Lang LIU, Zhiming YIN, Shuheng MI, Zhengyun WANG. Thermal storage performance of carbon-containing binary phase change heat storage materials [J]. Energy Storage Science and Technology, 2022, 11(4): 1175-1183. |
[9] | Dongge QIAO, Xunliang LIU, Zhi WEN, Ruifeng DOU, Wenning ZHOU. Numerical analysis of inhibition of lithium dendrite growth by heating and pulse charging [J]. Energy Storage Science and Technology, 2022, 11(3): 1008-1018. |
[10] | Dengfeng JIANG, Yajun CHEN, Yaolong HE, Da BIAN, Hongjiu HU. Role of drying on the mechanical behavior of composite anodes [J]. Energy Storage Science and Technology, 2022, 11(3): 957-963. |
[11] | Peiping YU, Liang XU, Bingyun MA, Qintao SUN, Hao YANG, Yue LIU, Tao CHENG. Multiscale simulation of a solid electrolyte interphase [J]. Energy Storage Science and Technology, 2022, 11(3): 921-928. |
[12] | Xiaoge LOU, Xin WANG, Pengfei SI, Xiangyang RONG. Energy and energy analysis of two-stage water tanks variable-volume thermal heat storage system for solar heating [J]. Energy Storage Science and Technology, 2022, 11(2): 538-546. |
[13] | Bing CHEN, Lili ZHENG, Xichao LI, Yan FENG, Zhuo XU, Zuoqiang DAI. Discharge performance and charge-discharge heat generation characteristics of aging batteries [J]. Energy Storage Science and Technology, 2022, 11(2): 679-689. |
[14] | Xiang WANG, Jing XU, Yajun DING, Fan DING, Xin XU. Optimal design of liquid cooling pipeline for battery module based on VCALB [J]. Energy Storage Science and Technology, 2022, 11(2): 547-552. |
[15] | Zhao DU, Kang YANG, Gao SHU, Pan WEI, Xiaohu YANG. Experimental Study on the Heat Storage and Release of the Solid-Liquid Phase Change in Metal-Foam-Filled Tube [J]. Energy Storage Science and Technology, 2022, 11(2): 531-537. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||