Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (3): 1077-1092.doi: 10.19799/j.cnki.2095-4239.2022.0081
• Research Highlight • Previous Articles
Guanjun CEN(), Jing ZHU, Ronghan QIAO, Xiaoyu SHEN, Hongxiang JI, Mengyu TIAN, Feng TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG()
Received:
2022-02-18
Revised:
2022-02-20
Online:
2022-03-05
Published:
2022-03-11
Contact:
Xuejie HUANG
E-mail:cenguanjun15@mails.ucas.ac.cn;xjhuang@jphy.ac.an
CLC Number:
Guanjun CEN, Jing ZHU, Ronghan QIAO, Xiaoyu SHEN, Hongxiang JI, Mengyu TIAN, Feng TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Dec. 1, 2021 to Jan. 31, 2022)[J]. Energy Storage Science and Technology, 2022, 11(3): 1077-1092.
1 | RAJKAMAL A, KIM H. Formation of pillar-ions in the Li layer decreasing the Li/Ni disorder and improving the structural stability of cation-doped Ni-rich LiNi0.8Co0.1Mn0.1O2: A first-principles verification[J]. ACS Applied Energy Materials, 2021, 4(12): 14068-14079. |
2 | GENG C X, RATHORE D, HEINO D, et al. Mechanism of action of the tungsten dopant in LiNiO2 positive electrode materials[J]. Advanced Energy Materials, 2022, 12(6): doi: 10.1002/aenm.202103067. |
3 | PARK N Y, RYU H H, KUO L Y, et al. High-energy cathodes via precision microstructure tailoring for next-generation electric vehicles[J]. ACS Energy Letters, 2021, 6(12): 4195-4202. |
4 | MA C, CHEN M J, DING Z P, et al. Anchoring interfacial nickel cations by tunable coordinative structure for highly stabilized nickel-rich layered oxide cathodes[J]. Nano Energy, 2022, 93: doi: 10.1016/j.nanoen.2021.106803. |
5 | JEONG M, LEE W, YUN S, et al. Strategic approach to diversify design options for Li-ion batteries by utilizing low-Ni layered cathode materials[J]. Advanced Energy Materials, 2022, 12(7): doi: 10.1002/aenm.202103052. |
6 | KANEDA H, FURUICHI Y, IKEZAWA A, et al. Effects of aluminum substitution in nickel-rich layered LiNixAl1– xO2 (x = 0.92, 0.95) positive electrode materials for Li-ion batteries on high-rate cycle performance[J]. Journal of Materials Chemistry A, 2021, 9(38): 21981-21994. |
7 | WANG D Q, WU Y Q, WU C, et al. Highly oriented{010}crystal plane induced by boron in cobalt-free Li-and Mn-rich layered oxide[J]. ACS Applied Materials & Interfaces, 2022, 14(2): 2711-2719. |
8 | LI Z B, LI Y W, ZHANG M J, et al. Modifying Li@Mn6 superstructure units by Al substitution to enhance the long-cycle performance of co-free Li-rich cathode[J]. Advanced Energy Materials, 2021, 11(37): doi: 10.1002/aenm.202101962. |
9 | GAO Y, QIAO F, YOU J, et al. Effect of the supergravity on the formation and cycle life of non-aqueous lithium metal batteries[J]. Nature Communications, 2022, 13: doi: 10.1038/s41467-021-27429-8. |
10 | DING J F, XU R, MA X X, et al. Quantification of the dynamic interface evolution in high-efficiency working Li-metal batteries[J]. Angewandte Chemie, 2022, doi: 10.1002/anie.202115602. |
11 | HARRISON K L, MERRILL L C, LONG D M, et al. Cryogenic electron microscopy reveals that applied pressure promotes short circuits in Li batteries[J]. iScience, 2021, 24(12): doi: 10.1016/j.isci.2021.103394. |
12 | LIU Z Y, HE B Y, ZHANG Z B, et al. Lithium/graphene composite anode with 3D structural LiF protection layer for high-performance lithium metal batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(2): 2871-2880. |
13 | YE Y, ZHAO Y, ZHAO T, et al. An antipulverization and high-continuity lithium metal anode for high-energy lithium batteries[J]. Advanced Materials, 2021, doi: 10.1002/adma.202105029. |
14 | CHEN C, LIANG Q W, CHEN Z X, et al. Phenoxy radical-induced formation of dual-layered protection film for high-rate and dendrite-free lithium-metal anodes[J]. Angewandte Chemie, 2021, 60(51): 26718-26724. |
15 | CUI X M, CHU Y, WANG X H, et al. Stabilizing lithium metal anodes by a self-healable and Li-regulating interlayer[J]. ACS Applied Materials & Interfaces, 2021, 13(37): 44983-44990. |
16 | WANG Q, WAN J, CAO X, et al. Organophosphorus hybrid solid electrolyte interphase layer based on LixPO4 enables uniform lithium deposition for high-performance lithium metal batteries[J]. Advanced Functional Materials, 2022, 32(2): doi: 10.1002/adfm.202107923. |
17 | WANG J, HU H M, DUAN S R, et al. Construction of moisture-stable lithium diffusion-controlling layer toward high performance dendrite-free lithium anode[J]. Advanced Functional Materials, 2021: doi: 10.1002/adfm.202110468. |
18 | LI S, WANG X S, HAN B, et al. Ultrathin and high-modulus LiBO2 layer highly elevates the interfacial dynamics and stability of lithium anode under wide temperature range[J]. Small, 2021: doi: 10.1002/smll.202106427. |
19 | HOLOUBEK J, LIU H, WU Z, et al. Tailoring electrolyte solvation for Li metal batteries cycled at ultra-low temperature[J]. Nature Energy, 2021, 6(3): 303-313. |
20 | LU Z Y, GUO Y, ZHANG S W, et al. Crowning metal ions by supramolecularization as a general remedy toward a dendrite-free alkali-metal battery[J]. Advanced Materials (Deerfield Beach, Fla), 2021, 33(31): doi: 10.1002/adma.202101745. |
21 | KIM S S, SENTHIL C, JUNG S M, et al. Chemically engineered alloy anode enabling fully reversible conversion reaction: Design of a C-Sn-bonded aerofilm anode[J]. Journal of Materials Chemistry A, 2022, 10(7): 3595-3604. |
22 | REN Y, XIANG L Z, YIN X C, et al. Ultrathin Si nanosheets dispersed in graphene matrix enable stable interface and high rate capability of anode for lithium-ion batteries[J]. Advanced Functional Materials, 2022: doi: 10.1002/adfm.202110046. |
23 | HARPAK N, DAVIDI G, PATOLSKY F. Breathing parylene-based nanothin artificial SEI for highly-stable long life three-dimensional silicon lithium-ion batteries[J]. Chemical Engineering Journal, 2022, 429: doi: 10.1016/j.cej.2021.132077. |
24 | BURDETTE-TROFIMOV M K, ARMSTRONG B L, HEROUX L, et al. Competitive adsorption within electrode slurries and impact on cell fabrication and performance[J]. Journal of Power Sources, 2022, 520: doi: 10.1016/j.jpowsour.2021.230914. |
25 | MOYASSARI E, ROTH T, KÜCHER S, et al. The role of silicon in silicon-graphite composite electrodes regarding specific capacity, cycle stability, and expansion[J]. Journal of the Electrochemical Society, 2022, 169(1): doi: 10.1149/1945-7111/ac4545. |
26 | YUAN J M, REN W F, WANG K, et al. Ultrahighly elastic lignin-based copolymers as an effective binder for silicon anodes of lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(1): 166-176. |
27 | BAYıNDıR O, SOHEL I H, EROL M, et al. Controlling the crystallographic orientation of graphite electrodes for fast-charging Li-ion batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(1): 891-899. |
28 | KAZYAK E, CHEN K H, CHEN Y X, et al. Enabling 4 C fast charging of lithium-ion batteries by coating graphite with a solid-state electrolyte[J]. Advanced Energy Materials, 2022, 12(1): doi: 10.1002/aenm.202102618. |
29 | WEN X, ZENG Q H, GUAN J Z, et al. 3D structural lithium alginate-based gel polymer electrolytes with superior high-rate long cycling performance for high-energy lithium metal batteries[J]. Journal of Materials Chemistry A, 2022, 10(2): 707-718. |
30 | LI W, GAO J, TIAN H Y, et al. SnF 2-catalyzed formation of polymerized dioxolane as solid electrolyte and its thermal decomposition behavior[J]. Angewandte Chemie, 2022, 61(6): doi: 10.1002/anie.202114805. |
31 | LI M J, YANG J X, SHI Y Q, et al. Soluble organic cathodes enable long cycle life, high rate, and wide-temperature lithium-ion batteries[J]. Advanced Materials, 2022, 34(5): doi: 10.1002/adma.202107226. |
32 | LECHARTIER M, PORCARELLI L, ZHU H J, et al. Single-ion polymer/LLZO hybrid electrolytes with high lithium conductivity[J]. Materials Advances, 2022, 3(2): 1139-1151. |
33 | YANG L, TAO X Y, HUANG X, et al. Efficient mutual-compensating Li-loss strategy toward highly conductive garnet ceramics for Li-metal solid-state batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(47): 56054-56063. |
34 | LUO X M, WU X Z, XIANG J Y, et al. Heterovalent cation substitution to enhance the ionic conductivity of halide electrolytes[J]. ACS Applied Materials & Interfaces, 2021, 13(40): 47610-47618. |
35 | WANG C H, YU R Z, DUAN H, et al. Solvent-free approach for interweaving freestanding and ultrathin inorganic solid electrolyte membranes[J]. ACS Energy Letters, 2022, 7(1): 410-416. |
36 | XU J R, LI Y X, LU P S, et al. Water-stable sulfide solid electrolyte membranes directly applicable in all-solid-state batteries enabled by superhydrophobic Li+-conducting protection layer[J]. Advanced Energy Materials, 2022, 12(2): doi: 10.1002/aenm.202102348. |
37 | LEE Y, JEONG J, LEE H J, et al. Lithium argyrodite sulfide electrolytes with high ionic conductivity and air stability for all-solid-state Li-ion batteries[J]. ACS Energy Letters, 2022, 7(1): 171-179. |
38 | KHURRAM TUFAIL M, AHMAD N, ZHOU L, et al. Insight on air-induced degradation mechanism of Li7P3S11 to design a chemical-stable solid electrolyte with high Li2S utilization in all-solid-state Li/S batteries[J]. Chemical Engineering Journal, 2021, 425: doi: 10.1016/j.cej.2021.130535. |
39 | PENG L F, YU C, ZHANG Z Q, et al. Chlorine-rich lithium argyrodite enabling solid-state batteries with capabilities of high voltage, high rate, low-temperature and ultralong cyclability[J]. Chemical Engineering Journal, 2022, 430: doi: 10.1016/j.cej.2021.132896. |
40 | REN Y X, CUI Z H, BHARGAV A, et al. A self-healable sulfide/polymer composite electrolyte for long-life, low-lithium-excess lithium-metal batteries[J]. Advanced Functional Materials, 2022, 32(2): doi: 10.1002/adfm.202106680. |
41 | WU H Y, CHEN X, ZHANG X Y, et al. Multidimensional nanobox structural carbon nanofibers with dual confined effect for boosting storage performance and electrochemical kinetics of alkali metal ion batteries[J]. Chemical Engineering Journal, 2022, 428: doi: 10.1016/j.cej.2021.131207. |
42 | NAGATA H, AKIMOTO J. Excellent deformable oxide glass electrolytes and oxide-type all-solid-state Li2S-Si batteries employing these electrolytes[J]. ACS Applied Materials & Interfaces, 2021, 13(30): 35785-35794. |
43 | LEE M J, HAN J, LEE K, et al. Elastomeric electrolytes for high-energy solid-state lithium batteries[J]. Nature, 2022, 601(7892): 217-222. |
44 | ZHU X Y, CHANG Z, YANG H J, et al. Highly safe and stable lithium-metal batteries based on a quasi-solid-state electrolyte[J]. Journal of Materials Chemistry A, 2022, 10(2): 651-663. |
45 | WANG X S, WANG S W, WANG H R, et al. Hybrid electrolyte with dual-anion-aggregated solvation sheath for stabilizing high-voltage lithium-metal batteries[J]. Advanced Materials, 2021, 33(52): doi: 10.1002/adma.202007945. |
46 | YU Z, RUDNICKI P E, ZHANG Z, et al. Rational solvent molecule tuning for high-performance lithium metal battery electrolytes[J]. Nature Energy, 2022, 7(1): 94-106. |
47 | FAN H M, LIU X W, LUO L B, et al. All-climate high-voltage commercial lithium-ion batteries based on propylene carbonate electrolytes[J]. ACS Applied Materials & Interfaces, 2022, 14(1): 574-580. |
48 | LIU X W, SHEN X H, LUO L B, et al. Designing advanced electrolytes for lithium secondary batteries based on the coordination number rule[J]. ACS Energy Letters, 2021, 6(12): 4282-4290. |
49 | WU Y, REN D S, LIU X, et al. High-voltage and high-safety practical lithium batteries with ethylene carbonate-free electrolyte[J]. Advanced Energy Materials, 2021, 11(47): doi: 10.1002/aenm.202102299. |
50 | LI X, LIU J D, HE J, et al. Hexafluoroisopropyl trifluoromethanesulfonate-driven easily Li+ desolvated electrolyte to afford Li||NCM811 cells with efficient anode/cathode electrolyte interphases[J]. Advanced Functional Materials, 2021, 31(37): doi: 10.1002/adfm.202104395. |
51 | YANG S X, ZHANG Y P, LI Z L, et al. Rational electrolyte design to form inorganic-polymeric interphase on silicon-based anodes[J]. ACS Energy Letters, 2021, 6(5): 1811-1820. |
52 | ZHANG Y Y, LI X, SIVONXAY E, et al. Silicon anodes with improved calendar life enabled by multivalent additives[J]. Advanced Energy Materials, 2021, 11(37): doi: 10.1002/aenm.202101820. |
53 | ZOU Y, FU A, ZHANG J, et al. Stabilizing the LiCoO2 interface at high voltage with an electrolyte additive 2, 4, 6-tris(4-fluorophenyl)boroxin[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(44): 15042-15052. |
54 | HOLOUBEK J, YAN Q Z, LIU H D, et al. Oxidative stabilization of dilute ether electrolytes via anion modification[J]. ACS Energy Letters, 2022, 7(2): 675-682. |
55 | JIA H, ZHANG X H, XU Y B, et al. Toward the practical use of cobalt-free lithium-ion batteries by an advanced ether-based electrolyte[J]. ACS Applied Materials & Interfaces, 2021, 13(37): 44339-44347. |
56 | PIAO Z H, XIAO P T, LUO R P, et al. Constructing a stable interface layer by tailoring solvation chemistry in carbonate electrolytes for high-performance lithium-metal batteries[J]. Advanced Materials, 2022: doi: 10.1002/adma.202108400. |
57 | FENG W L, YANG P, DONG X L, et al. A low temperature soldered all ceramic lithium battery[J]. ACS Applied Materials & Interfaces, 2022, 14(1): 1149-1156. |
58 | HAN Z L, LI S P, XIONG R Y, et al. Low tortuosity and reinforced concrete type ultra-thick electrode for practical lithium-sulfur batteries[J]. Advanced Functional Materials, 2021: doi: 10.1002/adfm.202108669. |
59 | WAN H L, ZHANG B, LIU S F, et al. Understanding LiI-LiBr catalyst activity for solid state Li2 S/S reactions in an all-solid-state lithium battery[J]. Nano Letters, 2021, 21(19): 8488-8494. |
60 | CAO C C, ZHONG Y J, CHANDULA WASALATHILAKE K, et al. A low resistance and stable lithium-garnet electrolyte interface enabled by a multifunctional anode additive for solid-state lithium batteries[J]. Journal of Materials Chemistry A, 2022, 10(5): 2519-2527. |
61 | TANG J T, WANG L, TIAN C H, et al. Double-protected layers with solid-liquid hybrid electrolytes for long-cycle-life lithium batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(3): 4170-4178. |
62 | PENG J, WU D X, SONG F M, et al. High current density and long cycle life enabled by sulfide solid electrolyte and dendrite-free liquid lithium anode[J]. Advanced Functional Materials, 2022, 32(2): doi: 10.1002/adfm.202105776. |
63 | YAO Z Y, KANG Y, HOU M J, et al. Promoting homogeneous interfacial Li+ migration by using a facile N2 plasma strategy for all-solid-state lithium-metal batteries[J]. Advanced Functional Materials, 2022: doi: 10.1002/adfm.202111919. |
64 | LI J W, LI Y Y, CHENG J, et al. In situ modified sulfide solid electrolyte enabling stable lithium metal batteries[J]. Journal of Power Sources, 2022, 518: doi: 10.1016/j.jpowsour.2021.230739. |
65 | ZHAO B, SHI Y R, WU J, et al. Stabilizing Li7P3S11/lithium metal anode interface by in situ bifunctional composite layer[J]. Chemical Engineering Journal, 2022, 429: doi: 10.1016/j.cej.2021.132411. |
66 | LUO S, WANG Z, LI X, et al. Growth of lithium-indium dendrites in all-solid-state lithium-based batteries with sulfide electrolytes[J]. Nature Communications, 2021, 12: doi: 10.1038/s41467-021-27311-7. |
67 | LEWIS J A, LEE C, LIU Y, et al. Role of areal capacity in determining short circuiting of sulfide-based solid-state batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(3): 4051-4060. |
68 | NAVA M, ZHANG S Y, PASTORE K S, et al. Lithium superoxide encapsulated in a benzoquinone anion matrix[J]. PNAS, 2021, 118(51): doi: 10.1073/pnas.2019392118. |
69 | MEISNER Q J, JIANG S S, CAO P F, et al. An in situ generated polymer electrolyte via anionic ring-opening polymerization for lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2021, 9(46): 25927-25933. |
70 | WANG J, ZHANG J, DUAN S R, et al. Interfacial lithium-nitrogen bond catalyzes sulfide oxidation reactions in high-loading Li2S cathode[J]. Chemical Engineering Journal, 2022, 429: doi: 10.1016/j.cej.2021.132352. |
71 | ZENG Z H, NONG W, LI Y, et al. Universal-descriptors-guided design of single atom catalysts toward oxidation of Li2 S in lithium-sulfur batteries[J]. Advanced Science, 2021, 8(23): doi: 10.1002/advs.202102809. |
72 | CHEN X, JI H J, RAO Z X, et al. Insight into the fading mechanism of the solid-conversion sulfur cathodes and designing long cycle lithium-sulfur batteries[J]. Advanced Energy Materials, 2022, 12(1): doi: 10.1002/aenm.202102774. |
73 | WU W H, LI X Y, LIU L L, et al. Uniform coverage of high-loading sulfur on cross-linked carbon nanofibers for high reaction kinetics in Li-S batteries with low electrolyte/sulfur ratio[J]. Journal of Materials Chemistry A, 2022, 10(3): 1433-1441. |
74 | GAO R H, ZHANG Q, ZHAO Y, et al. Regulating polysulfide redox kinetics on a self-healing electrode for high-performance flexible lithium-sulfur batteries[J]. Advanced Functional Materials, 2021: doi: 10.1002/adfm.202110313. |
75 | HAO X G, MA J B, CHENG X, et al. Electron and ion co-conductive catalyst achieving instant transformation of lithium polysulfide towards Li2 S[J]. Advanced Materials, 2021, 33(52): doi: 10.1002/adma.202105362. |
76 | HE J R, BHARGAV A, MANTHIRAM A. High-performance anode-free Li-S batteries with an integrated Li2S-electrocatalyst cathode[J]. ACS Energy Letters, 2022, 7(2): 583-590. |
77 | SUN F, QU Z B, WANG H, et al. Vapor deposition of aluminium oxide into N-rich mesoporous carbon framework as a reversible sulfur host for lithium-sulfur battery cathode[J]. Nano Research, 2021, 14(1): 131-138. |
78 | WANG S, HUANG F Y, LI X P, et al. Regulating Li2S deposition by Ostwald ripening in lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(3): 4204-4210. |
79 | XUE S, ZHAO S, LU J, et al. Sulfide with oxygen-rich carbon network for good lithium-storage kinetics[J]. ACS Nano, 2021: doi: 10.1021/acsnano.1c09446. |
80 | YANG D W, LIANG Z F, TANG P Y, et al. A high conductivity 1D π-d conjugated metal-organic framework with efficient polysulfide trapping-diffusion-catalysis in lithium-sulfur batteries[J]. Advanced Materials, 2022: doi: 10.1002/adma.202108835. |
81 | MAYER D, WURBA A K, BOLD B, et al. Investigation of the mechanical behavior of electrodes after calendering and its influence on singulation and cell performance[J]. Processes, 2021, 9(11): doi: 10.3390/pr9112009. |
82 | NOMURA Y, YAMAMOTO K, YAMAGISHI Y, et al. Lithium transport pathways guided by grain architectures in Ni-rich layered cathodes[J]. ACS Nano, 2021, 15(12): 19806-19814. |
83 | OKASINSKI J S, SHKROB I A, RODRIGUES M T F, et al. Time-resolved X-ray operando observations of lithiation gradients across the cathode matrix and individual oxide particles during fast cycling of a Li-ion cell[J]. Journal of the Electrochemical Society, 2021, 168(11): doi: 10.1149/1945-7111/ac3941. |
84 | TONIN G, VAUGHAN G B M, BOUCHET R, et al. Operando X-ray absorption tomography for the characterization of lithium metal electrode morphology and heterogeneity in a liquid Li/S cell[J]. Journal of Power Sources, 2022, 520: doi: 10.1016/j.jpowsour.2021.230854. |
85 | ZHANG Z W, LI Y Z, XU R, et al. Capturing the swelling of solid-electrolyte interphase in lithium metal batteries[J]. Science, 2022, 375(6576): 66-70. |
86 | CHANG W, MAY R, WANG M, et al. Evolving contact mechanics and microstructure formation dynamics of the lithium metal-Li7La3Zr2O12 interface[J]. Nature Communications, 2021, 12: doi: 10.1038/s41467-021-26632-x. |
87 | BANERJEE S, HOLEKEVI CHANDRAPPA M L, ONG S P. Role of critical oxygen concentration in the β-Li3PS4– xOx solid electrolyte[J]. ACS Applied Energy Materials, 2022, 5(1): 35-41. |
88 | ROMANO BRANDT L, NISHIO K, SALVATI E, et al. Improving ultra-fast charging performance and durability of all solid state thin film Li-NMC battery-on-chip systems by in situ TEM lamella analysis[J]. Applied Materials Today, 2022, 26: doi: 10.1016/j.apmt.2021.101282. |
89 | YAN H H, TANTRATIAN K, ELLWOOD K, et al. How does the creep stress regulate void formation at the lithium-solid electrolyte interface during stripping?[J]. Advanced Energy Materials, 2022, 12(2): doi: 10.1002/aenm.202102283. |
90 | SHIN W, MANTHIRAM A. A facile potential hold method for fostering an inorganic solid-electrolyte interphase for anode-free lithium-metal batteries[J]. Angewandte Chemie International Edition, 2022, doi: 10.1002/anie.202115909. |
91 | CHUN G H, SHIM J H, YU S. Computational investigation of the interfacial stability of lithium chloride solid electrolytes in all-solid-state lithium batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(1): 1241-1248. |
92 | FU Y Y, MA C. Interplay between Li3YX6(X=Cl or Br) solid electrolytes and the Li metal anode[J]. Science China Materials, 2021, 64(6): 1378-1385. |
93 | ZHENG C, ZHANG J, XIA Y, et al. Unprecedented self-healing effect of Li6 PS5 Cl-based all-solid-state lithium battery[J]. Small, 2021, 17(37): doi: 10.1002/smll.202101326. |
94 | ZUO T T, RUEß R, PAN R, et al. A mechanistic investigation of the Li10GeP2S12|LiNi1- x- yCoxMnyO2 interface stability in all-solid-state lithium batteries[J]. Nature Communications, 2021, 12: doi: 10.1038/s41467-021-26895-4. |
95 | HAARMANN L, ROHRER J, ALBE K. On the origin of zero interface resistance in the Li6.25Al0.25La3Zr2O12|Li0 system: An atomistic investigation[J]. ACS Applied Materials & Interfaces, 2021, 13(44): 52629-52635. |
96 | ZHAO X, YI R W, ZHENG L, et al. Practical prelithiation of 4.5 V LiCoO2||Graphite batteries by a passivated lithium-carbon composite[J]. Small, 2021: doi: 10.1002/smll.202106394. |
97 | ZHANG L H, JEONG S, REINSMA N, et al. Decomposition of Li2O2 as the cathode prelithiation additive for lithium-ion batteries without an additional catalyst and the initial performance investigation[J]. Journal of the Electrochemical Society, 2021, 168(12): doi: 10.1149/1945-7111/ac3e46. |
98 | YU W, YANG J L, LI J, et al. Facile production of phosphorene nanoribbons towards application in lithium metal battery[J]. Advanced Materials, 2021, 33(35): doi: 10.1002/adma.202102083. |
99 | LEE G, OH S H, PARK B K, et al. Trimesitylborane-embedded radical scavenging separator for lithium-ion batteries[J]. Current Applied Physics, 2021, 31: 1-6. |
100 | BIZOT C, BLIN M A, GUICHARD P, et al. Aluminum Current collector for high voltage Li-ion battery. Part I: A benchmark study with statistical analysis[J]. Electrochemistry Communications, 2021, 126: doi: 10.1016/j.elecom.2021.107013. |
[1] | Xiongwen XU, Yang NIE, Jian TU, Zheng XU, Jian XIE, Xinbing ZHAO. Abuse performance of pouch-type Na-ion batteries based on Prussian blue cathode [J]. Energy Storage Science and Technology, 2022, 11(7): 2030-2039. |
[2] | Yingwei PEI, Hong ZHANG, Xinghui WANG. Recent advances in the electrolytes of rechargeable zinc-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(7): 2075-2082. |
[3] | Sida HUO, Wendong XUE, Xinli LI, Yong LI. Visualization analysis of composite electrolytes for lithium battery based on CiteSpace [J]. Energy Storage Science and Technology, 2022, 11(7): 2103-2113. |
[4] | Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2022 to May 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(7): 2007-2022. |
[5] | OU Yu, HOU Wenhui, LIU Kai. Research progress of smart safety electrolytes in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1772-1787. |
[6] | ZHOU Weidong, HUANG Qiu, XIE Xiaoxin, CHEN Kejun, LI Wei, QIU Jieshan. Research progress of polymer electrolyte for solid state lithium batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1788-1805. |
[7] | LI Yitao, SHEN Kaier, PANG Quanquan. Advance in organics enhanced sulfide-based solid-state batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1902-1918. |
[8] | ZHOU Wei, FU Dongju, LIU Weifeng, CHEN Jianjun, HU Zhao, ZENG Xierong. Research progress on recycling technology of waste lithium iron phosphate power battery [J]. Energy Storage Science and Technology, 2022, 11(6): 1854-1864. |
[9] | ZHANG Yan, WANG Hai, LIU Zhaomeng, ZHANG Deliu, WANG Jiadong, LI Jianzhong, GAO Xuanwen, LUO Wenbin. Research progress of nickel-rich ternary cathode material ncm for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1693-1705. |
[10] | Maolin FANG, Ying ZHANG, Lin QIAO, Shumin LIU, Zhongqi CAO, Huamin ZHANG, Xiangkun MA. Research progress of iron-chromium flow batteries technology [J]. Energy Storage Science and Technology, 2022, 11(5): 1358-1367. |
[11] | Chaochao WEI, Chuang YU, Zhongkai WU, Linfeng PENG, Shijie CHENG, Jia XIE. Research progress of Li3PS4 solid electrolyte [J]. Energy Storage Science and Technology, 2022, 11(5): 1368-1382. |
[12] | Honghui WANG, Zeqin WU, Deren CHU. Thermal behavior of lithium titanate based Li ion batteries under slight over-discharging condition [J]. Energy Storage Science and Technology, 2022, 11(5): 1305-1313. |
[13] | Zhicheng CHEN, Zongxu LI, Ling CAI, Yisi LIU. Development status and future prospects of flexible metal-air batteries [J]. Energy Storage Science and Technology, 2022, 11(5): 1401-1410. |
[14] | Ronghan QIAO, Guanjun CEN, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Feb. 1, 2022 to Mar. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(5): 1289-1304. |
[15] | Xinyi WANG, Weijie LI, Chao HAN, Huakun LIU, Shixue DOU. Challenges and optimization strategies of the anode of aqueous zinc-ion battery [J]. Energy Storage Science and Technology, 2022, 11(4): 1211-1225. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||