Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (6): 1883-1891.doi: 10.19799/j.cnki.2095-4239.2022.0198
Previous Articles Next Articles
ZHAO Yifei1(), YANG Zhendong1, LI Feng1, XIE Zhaojun1, ZHOU Zhen1,2()
Received:
2022-04-11
Revised:
2022-04-25
Online:
2022-06-05
Published:
2022-06-13
Contact:
ZHOU Zhen
E-mail:595866390@qq.com;zhouzhen@nankai.edu.cn
CLC Number:
ZHAO Yifei, YANG Zhendong, LI Feng, XIE Zhaojun, ZHOU Zhen. Nitrogen-doped carbon-coated Na3V2 (PO4 ) 2F3 cathode materials for sodium-ion batteries: Preparation and electrochemical performance[J]. Energy Storage Science and Technology, 2022, 11(6): 1883-1891.
Fig. 4
Electrochemical performance of NVPF@C-N cathode in sodium-ion half-cell. (a) The first four CV curves at a scan rate of 0.1 mV/s between 2.3 V and 4.5 V; (b) The first charge/discharge profiles of NVPF, NVPF@C and NVPF@C-N at 1 C; (c) The rate capacity from 1 C to 90 C of NVPF, NVPF@C and NVPF@C-N; (d) The comparison of rate performance for NVPF cathodes"
1 | ARMAND M, TARASCON J M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657. |
2 | YANG Z G, ZHANG J L, KINTNER-MEYER M C W, et al. Electrochemical energy storage for green grid[J]. Chemical Reviews, 2011, 111(5): 3577-3613. |
3 | DUNN B, KAMATH H, TARASCON J M. Electrical energy storage for the grid: A battery of choices[J]. Science, 2011, 334(6058): 928-935. |
4 | HU M, PANG X L, ZHOU Z. Recent progress in high-voltage lithium ion batteries[J]. Journal of Power Sources, 2013, 237: 229-242. |
5 | WANG P F, YOU Y, YIN Y X, et al. Layered oxide cathodes for sodium-ion batteries: Phase transition, air stability, and performance[J]. Advanced Energy Materials, 2018, 8(8): doi:10.1002/aenm.201701912. |
6 | ZHANG X, YANG Y A, ZHOU Z. Towards practical lithium-metal anodes[J]. Chemical Society Reviews, 2020, 49(10): 3040-3071. |
7 | ETACHERI V, MAROM R, ELAZARI R, et al. Challenges in the development of advanced Li-ion batteries: A review[J]. Energy & Environmental Science, 2011, 4(9): 3243-3262. |
ETACHERI V, MAROM R, ELAZARI R, et al. Challenges in the development of advanced Li-ion batteries: A review[J]. Energy & Environmental Science, 2011, 4(9): 3243. | |
8 | XIAO Y, LEE S H, SUN Y K. The application of metal sulfides in sodium ion batteries[J]. Advanced Energy Materials, 2017, 7(3): doi:10.1002/aenm.201601329. |
9 | YANG M, ZHONG Y R, BAO J, et al. Achieving battery-level energy density by constructing aqueous carbonaceous supercapacitors with hierarchical porous N-rich carbon materials[J]. Journal of Materials Chemistry A, 2015, 3(21): 11387-11394. |
10 | DE LA LLAVE E, BORGEL V, PARK K J, et al. Comparison between Na-ion and Li-ion cells: Understanding the critical role of the cathodes stability and the anodes pretreatment on the cells behavior[J]. ACS Applied Materials & Interfaces, 2016, 8(3): 1867-1875. |
11 | HU Z, ZHU Z Q, CHENG F Y, et al. Pyrite FeS2 for high-rate and long-life rechargeable sodium batteries[J]. Energy & Environmental Science, 2015, 8(4): 1309-1316. |
12 | KIM S W, SEO D H, MA X H, et al. Electrode materials for rechargeable sodium-ion batteries: Potential alternatives to current lithium-ion batteries[J]. Advanced Energy Materials, 2012, 2(7): 710-721. |
13 | SONG W X, JI X B, WU Z P, et al. First exploration of Na-ion migration pathways in the NASICON structure Na3V2(PO4)3[J]. Journal of Materials Chemistry A, 2014, 2(15): 5358. |
14 | WARNER T E, MILIUS W, MAIER J. New copper phosphates with the NASICON or alluaudite-type structures as ionic or mixed conductors[J]. Solid State Ionics, 1994, 74(3/4): 119-123. |
15 | GUO J Z, WANG P F, WU X L, et al. High-energy/power and low-temperature cathode for sodium-ion batteries: In situ XRD study and superior full-cell performance[J]. Advanced Materials, 2017, 29(33). doi:10.1002.adma.201701968. |
16 | LIU Q, WANG D X, YANG X, et al. Carbon-coated Na3V2(PO4)2F3 nanoparticles embedded in a mesoporous carbon matrix as a potential cathode material for sodium-ion batteries with superior rate capability and long-term cycle life[J]. Journal of Materials Chemistry A, 2015, 3(43): 21478-21485. |
17 | BIANCHINI M, FAUTH F, BRISSET N, et al. Comprehensive investigation of the Na3V2(PO4)2F3-NaV2(PO4)2F3 system by operando high resolution synchrotron X-ray diffraction[J]. Chemistry of Materials, 2015, 27(8): 3009-3020. |
18 | SERRAS P, PALOMARES V, ALONSO J, et al. Electrochemical Na extraction/insertion of Na3V2O2 x(PO4)2F3-2 x[J]. Chemistry of Materials, 2013, 25(24): 4917-4925. |
19 | YI H M, LING M X, XU W B, et al. VSC-doping and VSU-doping of Na3V2- xTix(PO4)2F3 compounds for sodium ion battery cathodes: Analysis of electrochemical performance and kinetic properties[J]. Nano Energy, 2018, 47: 340-352. |
20 | XIANG X D, LU Q Q, HAN M, et al. Superior high-rate capability of Na3(VO0.5)2(PO4)2F2 nanoparticles embedded in porous graphene through the pseudocapacitive effect[J]. Chemical Communications, 2016, 52(18): 3653-3656. |
21 | JIN H Y, DONG J, UCHAKER E, et al. Three dimensional architecture of carbon wrapped multilayer Na3V2O2(PO4)2F nanocubes embedded in graphene for improved sodium ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(34): 17563-17568. |
22 | WEI T Y, YANG G Z, WANG C X. Bottom-up assembly of strongly-coupled Na3V2(PO4)3/C into hierarchically porous hollow nanospheres for high-rate and-stable Na-ion storage[J]. Nano Energy, 2017, 39: 363-370. |
23 | KUMAR P R, JUNG Y H, KIM D K. Influence of carbon polymorphism towards improved sodium storage properties of Na3V2O2 x(PO4)2F3-2 x[J]. Journal of Solid State Electrochemistry, 2017, 21(1): 223-232. |
24 | PARK S, SONG J J, KIM S, et al. Phase-pure Na3V2(PO4)2F3 embedded in carbon matrix through a facile polyol synthesis as a potential cathode for high performance sodium-ion batteries[J]. Nano Research, 2019, 12(4): 911-917. |
25 | KUMAR P R, JUNG Y H, WANG J E, et al. Na3V2O2(PO4)2F-MWCNT nanocomposites as a stable and high rate cathode for aqueous and non-aqueous sodium-ion batteries[J]. Journal of Power Sources, 2016, 324: 421-427. |
26 | ZHU C B, WU C, CHEN C C, et al. A high power-high energy Na3V2(PO4)2F3 sodium cathode: Investigation of transport parameters, rational design and realization[J]. Chemistry of Materials, 2017, 29(12): 5207-5215. |
27 | WANG C, SHEN W, LIU H M. Nitrogen-doped carbon coated Li3V2(PO4)3 derived from a facile in situ fabrication strategy with ultrahigh-rate stable performance for lithium-ion storage[J]. New Journal of Chemistry, 2014, 38(1): 430-436. |
28 | SHEN W, WANG C, XU Q J, et al. Nitrogen-doping-induced defects of a carbon coating layer facilitate Na-storage in electrode materials[J]. Advanced Energy Materials, 2015, 5(1): doi:10.1002/aenm.201400982. |
29 | NIE P, ZHU Y Y, SHEN L F. From biomolecule to Na3V2(PO4)3/nitrogen-decorated carbon hybrids: Highly reversible cathodes for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2014, 2(43): 18606-18612. |
30 | ZHANG C L, LI H S, PING N, et al. Facile synthesis of nitrogen-doped carbon derived from polydopamine-coated Li3V2(PO4)3 as cathode material for lithium-ion batteries[J]. RSC Advances, 2014, 4(73): 38791-38796. |
31 | WANG C, WANG F X, LIU Z C, et al. N-doped carbon hollow microspheres for metal-free quasi-solid-state full sodium-ion capacitors[J]. Nano Energy, 2017, 41: 674-680. |
32 | ZHANG L L, MA D, LI T, et al. Polydopamine-derived nitrogen-doped carbon-covered Na3V2(PO4)2F3 cathode material for high-performance Na-ion batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(43): 36851-36859. |
33 | SHIN W H, JEONG H M, KIM B G, et al. Nitrogen-doped multiwall carbon nanotubes for lithium storage with extremely high capacity[J]. Nano Letters, 2012, 12(5): 2283-2288. |
34 | CAI D D, WANG S Q, LIAN P C, et al. Superhigh capacity and rate capability of high-level nitrogen-doped graphene sheets as anode materials for lithium-ion batteries[J]. Electrochimica Acta, 2013, 90: 492-497. |
35 | ZHAO J, GAO Y, LIU Q, et al. High rate capability and enhanced cyclability of Na3V2(PO4)2F3 cathode by in situ coating of carbon nanofibers for sodium-ion battery applications[J]. Chemistry, 2018, 24(12): 2913-2919. |
36 | DU P, MI K, HU F D, et al. Hierarchical hollow microspheres Na3V2(PO4)2F3C@rGO as high-performance cathode materials for sodium ion batteries[J]. New Journal of Chemistry, 2020, 44(30): 12985-12992. |
37 | LI Y S, LIANG X H, ZHONG G B, et al. Fiber-shape Na3V2(PO4)2F3@N-doped carbon as a cathode material with enhanced cycling stability for Na-ion batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(23): 25920-25929. |
38 | PI Y Q, GAN Z W, YAN M Y, et al. Insight into pre-sodiation in Na3V2(PO4)2F3/C@ hard carbon full cells for promoting the development of sodium-ion battery[J]. Chemical Engineering Journal, 2021, 413: doi:10.1016/j.cej.1020.127565. |
49 | LIANG K, WANG S J, ZHAO H S, et al. A facile strategy for developing uniform hierarchical Na3V2(PO4)2F3@carbonized polyacrylonitrile multi-clustered hollow microspheres for high-energy-density sodium-ion batteries[J]. Chemical Engineering Journal, 2022, 428: doi:10.1016/j.cej.2022.131780. |
40 | ZHANG Y, WANG T, TANG Y K, et al. In situ redox reaction induced firmly anchoring of Na3V2(PO4)2F3 on reduced graphene oxide & carbon nanosheets as cathodes for high stable sodium-ion batteries[J]. Journal of Power Sources, 2021, 516: doi:10.1016/j.jPowsour.2021.230515. |
41 | LIU Q, MENG X, WEI Z X, et al. Core/double-shell structured Na3V2(PO4)2F3@C nanocomposite as the high power and long lifespan cathode for sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2016, 8(46): 31709-31715. |
42 | PARK Y U, SEO D H, KWON H S, et al. A new high-energy cathode for a Na-ion battery with ultrahigh stability[J]. Journal of the American Chemical Society, 2013, 135(37): 13870-13878. |
43 | WU F, ZHU N, BAI Y, et al. Unveil the mechanism of solid electrolyte interphase on Na3V2(PO4)3 formed by a novel NaPF6/BMITFSI ionic liquid electrolyte[J]. Nano Energy, 2018, 51: 524-532. |
44 | ZHAO J, YANG X, YAO Y, et al. Moving to aqueous binder: A valid approach to achieving high-rate capability and long-term durability for sodium-ion battery[J]. Advanced Science, 2018, 5(4): doi:10.1002/advs.201700768. |
45 | LI L, ZHANG N, SU Y Q, et al. Fluorine dissolution-induced capacity degradation for fluorophosphate-based cathode materials[J]. ACS Applied Materials & Interfaces, 2021, 13(20): 23787-23793. |
46 | HWANG J, MATSUMOTO K, HAGIWARA R. Electrolytes toward high-voltage Na3V2(PO4)2F3 positive electrode durable against temperature variation[J]. Advanced Energy Materials, 2020, 10(34): doi:10.1002/aenm.202001880. |
47 | ZHOU X, XIE Y, DENG Y F, et al. The enhanced rate performance of LiFe0.5Mn0.5PO4/C cathode material via synergistic strategies of surfactant-assisted solid state method and carbon coating[J]. Journal of Materials Chemistry A, 2015, 3(3): 996-1004. |
48 | YANG S L, HU M J, XI L J, et al. Solvothermal synthesis of monodisperse LiFePO4 micro hollow spheres as high performance cathode material for lithium ion batteries[J]. ACS Applied Materials & Interfaces, 2013, 5(18): 8961-8967. |
49 | YANG L, LIAO H X, TIAN Y, et al. Rod-like Sb2MoO6: Structure evolution and sodium storage for sodium-ion batteries[J]. Small Methods, 2019, 3(5): doi:10.1002/smtd.201800533. |
[1] | Shuai CHEN, Ling CHEN, Hao JIANG. Nitrogen-doped amorphous vanadium oxide nanosheet arrays for rapid-charging quasi-solid asymmetric supercapacitors [J]. Energy Storage Science and Technology, 2021, 10(3): 945-951. |
[2] | Rixin LAI, Chuanjian JIANG, Lin LIU, Wenfeng ZHANG, Yu XIANG, Hai MING, Hao ZHANG, Gaoping CAO, Yun DU. Research progress of the regulation of nitrogen doping of graphene and the influence mechanism of supercapacitor capacitive performance [J]. Energy Storage Science and Technology, 2020, 9(6): 1657-1667. |
[3] | Mengying MA, Huilin PAN, Yongsheng HU. Progress in electrolyte research for non-aqueous sodium ion batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1234-1250. |
[4] | Xuejiao NIE, Jinzhi GUO, Meiyi WANG, Zhenyi GU, Xinxin ZHAO, Xu YANG, Haojie LIANG, Xinglong WU. Using spent lithium manganate to prepare Li0.25Na0.6MnO2 as cathode material in sodium-ion batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1402-1409. |
[5] | Guangling WEI, Ying JIANG, Jiahui ZHOU, Ziheng WANG, Yongxin HUANG, Man XIE, Feng WU. Research progress on metal oxides/sulfides/selenides anode materials of sodium ion batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1318-1326. |
[6] | ZHANG Huimin1,2,3, MING Hai 1,3, ZHANG Wenfeng1,3, WEN Yuehua1,3, YANG Yusheng1,3,MING Jun4. Non-aqueous sodium-ion batteries based on the anode of non-metallic sodium [J]. Energy Storage Science and Technology, 2017, 6(6): 1159-. |
[7] | QIU Shen, WU Xianyong, LU Haiyan, AI Xinping, YANG Hanxi, CAO Yuliang. Research progress of carbon-based sodium-storage anode materials [J]. Energy Storage Science and Technology, 2016, 5(3): 258-267. |
[8] | LIU Li1,2, WANG Xianyou1, CAO Guozhong2. Titanium-based materials as anode materials for sodium ion batteries [J]. Energy Storage Science and Technology, 2016, 5(3): 292-302. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||