Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (8): 2418-2431.doi: 10.19799/j.cnki.2095-4239.2022.0369
Previous Articles Next Articles
Chengshan XU1(), Borui LU2, Mengqi ZHANG1, Huaibin WANG1,3, Changyong JIN1, Minggao OUYANG1, Xuning FENG1(
)
Received:
2022-07-01
Revised:
2022-07-12
Online:
2022-08-05
Published:
2022-08-03
Contact:
Xuning FENG
E-mail:xcs_pcg@mail.tsinghua.edu.cn;fxn17@tsinghua.edu.cn
CLC Number:
Chengshan XU, Borui LU, Mengqi ZHANG, Huaibin WANG, Changyong JIN, Minggao OUYANG, Xuning FENG. Study on thermal runaway gas evolution in the lithium-ion battery energy storage cabin[J]. Energy Storage Science and Technology, 2022, 11(8): 2418-2431.
1 | 黎可, 穆居易, 金翼, 等. 磷酸铁锂电池火灾危险性[J]. 储能科学与技术, 2021, 10(3): 1177-1186. |
LI K, MU J Y, JIN Y, et al. Fire risk of lithium iron phosphate battery[J]. Energy Storage Science and Technology, 2021, 10(3): 1177-1186. | |
2 | 喻航, 张英, 徐超航, 等.锂电储能系统热失控防控技术研究进展[J/OL]. 储能科学与技术, 2022. [2022-06-29]. https://esst.cip.com.cn/CN/10.19799/j.cnki.2095-4239.2022.0116. |
YU H, ZHANG Y, XU C H, et al. Research progress of thermal runaway prevention and control technology for lithium battery energy storage systems[J/OL]. Energy Storage Science and Technology, 2022. [2022-06-29]. https://esst.cip.com.cn/CN/10.19799/j.cnki.2095-4239.2022.0116. | |
3 | 陈天雨, 高尚, 冯旭宁, 等. 锂离子电池热失控蔓延研究进展[J]. 储能科学与技术, 2018, 7(6): 1030-1039. |
CHEN T Y, GAO S, FENG X N, et al. Recent progress on thermal runaway propagation of lithium-ion battery[J]. Energy Storage Science and Technology, 2018, 7(6): 1030-1039. | |
4 | HECHT C, VICTOR K, ZURMÜHLEN S, et al. Electric vehicle route planning using real-world charging infrastructure in Germany[J]. eTransportation, 2021, 10: doi: 10.1016/j.etran.2021.100143. |
5 | FENG X N, XU C S, HE X M, et al. Mechanisms for the evolution of cell variations within a LiNixCoyMnzO2/graphite lithium-ion battery pack caused by temperature non-uniformity[J]. Journal of Cleaner Production, 2018, 205: 447-462. |
6 | XU C S, ZHANG F S, FENG X N, et al. Experimental study on thermal runaway propagation of lithium-ion battery modules with different parallel-series hybrid connections[J]. Journal of Cleaner Production, 2021, 284: doi: 10.1016/j.jclepro.2020.124749. |
7 | XIE W L, LIU X H, HE R, et al. Challenges and opportunities toward fast-charging of lithium-ion batteries[J]. Journal of Energy Storage, 2020, 32: doi: 10.1016/j.est.2020.101837. |
8 | LARSSON F, ANDERSSON P, BLOMQVIST P, et al. Toxic fluoride gas emissions from lithium-ion battery fires[J]. Scientific Reports, 2017, 7: doi: 10.1038/s41598-017-09784-z. |
9 | 黎华玲, 唐贤文, 邵丹, 等.锂离子电池热失控气体研究进展[J/OL].电池, 2022: 1-5. [2022-06-29]. http://kns.cnki.net/kcms/detail/43.1129.TM.20220530.1758.021.html. |
10 | 马彪, 林春景, 刘磊, 等. 锂离子电池热失控产气特性及其可燃极限[J]. 储能科学与技术, 2022, 11(5): 1592-1600. |
MA B, LIN C J, LIU L, et al. Venting characteristics and flammability limit of thermal runaway gas of lithium ion battery[J]. Energy Storage Science and Technology, 2022, 11(5): 1592-1600. | |
11 | 蔡晶菁. 锂离子电池储能电站火灾防控技术研究综述[J]. 消防科学与技术, 2022, 41(4): 472-477. |
CAI J J. Review on the fire prevention and control technology for lithium-ion battery energy storage power station[J]. Fire Science and Technology, 2022, 41(4): 472-477. | |
12 | FENG X N, REN D S, HE X M, et al. Mitigating thermal runaway of lithium-ion batteries[J]. Joule, 2020, 4(4): 743-770. |
13 | CHEN Y H, TANG Z Y, LU X H, et al. Research of explosion mechanism of lithium-ion battery[J]. Progress in Chemistry, 2006, 18: 823. |
14 | SAID A O, LEE C, STOLIAROV S I. Experimental investigation of cascading failure in 18650 lithium ion cell arrays: Impact of cathode chemistry[J]. Journal of Power Sources, 2020, 446: doi: 10.1016/j.jpowsour.2019.227347. |
15 | MACDONALD M P, CHANDRASEKARAN S, GARIMELLA S, et al. Thermal runaway in a prismatic lithium ion cell triggered by a short circuit[J]. Journal of Energy Storage, 2021, 40: doi: 10.1016/j.est.2021.102737. |
16 | GOLUBKOV A W, FUCHS D, WAGNER J, et al. Thermal-runaway experiments on consumer Li-ion batteries with metal-oxide and olivin-type cathodes[J]. RSC Advances, 2014, 4(7): 3633-3642. |
17 | BAIRD A R, ARCHIBALD E J, MARR K C, et al. Explosion hazards from lithium-ion battery vent gas[J]. Journal of Power Sources, 2020, 446: doi: 10.1016/j.jpowsour.2019.227257. |
18 | QIN P, JIA Z Z, WU J Y, et al. The thermal runaway analysis on LiFePO4 electrical energy storage packs with different venting areas and void volumes[J]. Applied Energy, 2022, 313: doi: 10.1016/j.apenergy.2022.118767. |
19 | ZHANG L, DUAN Q L, MENG X D, et al. Experimental investigation on intermittent spray cooling and toxic hazards of lithium-ion battery thermal runaway[J]. Energy Conversion and Management, 2022, 252: doi: 10.1016/j.enconman.2021.115091. |
20 | MENG X D, LI S, FU W D, et al. Experimental study of intermittent spray cooling on suppression for lithium iron phosphate battery fires[J]. eTransportation, 2022, 11: doi: 10.1016/j.etran.2021.100142. |
21 | ZOU K Y, CHEN X, DING Z W, et al. Jet behavior of prismatic lithium-ion batteries during thermal runaway[J]. Applied Thermal Engineering, 2020, 179: doi: 10.1016/j.applthermaleng.2020.115745. |
22 | JIN Y, ZHAO Z X, MIAO S, et al. Explosion hazards study of grid-scale lithium-ion battery energy storage station[J]. Journal of Energy Storage, 2021, 42: doi: 10.1016/j.est.2021.102987. |
23 | ZHANG Y J, WANG H W, LI W F, et al. Quantitative identification of emissions from abused prismatic Ni-rich lithium-ion batteries[J]. eTransportation, 2019, 2: doi: 10.1016/j.etran.2019.100031. |
24 | YUAN S, CHANG C Y, ZHANG J Q, et al. Experimental investigation of a micelle encapsulator F-500 on suppressing lithium ion phosphate batteries fire and rapid cooling[J]. Journal of Loss Prevention in the Process Industries, 2022: doi: 10.1016/j.jlp.2022.104816. |
25 | MAO B B, ZHAO C P, CHEN H D, et al. Experimental and modeling analysis of jet flow and fire dynamics of 18650-type lithium-ion battery[J]. Applied Energy, 2021, 281: doi: 10.1016/j.apenergy.2020.116054. |
[1] | Tao YIN, Longzhou JIA, Xiuliang CHANG, Zuoqiang DAI, Lili ZHENG. Research on thermal safety of soft-pack LiFePO4 battery after high-voltage float charge [J]. Energy Storage Science and Technology, 2022, 11(8): 2546-2555. |
[2] | Tao SUN, Tengteng SHEN, Xin LIU, Dongsheng REN, Jinhai LIU, Yuejiu ZHENG, Luyan WANG, Languang LU, Minggao OUYANG. Application of titration gas chromatography technology in the quantitative detection of lithium plating in Li-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(8): 2564-2573. |
[3] | Yang WANG, Xu LU, Yuxin ZHANG, Long LIU. Thermal runaway exhaust strategy of power battery [J]. Energy Storage Science and Technology, 2022, 11(8): 2480-2487. |
[4] | Qingsong ZHANG, Yang ZHAO, Tiantian LIU. Effects of state of charge and battery layout on thermal runaway propagation in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(8): 2519-2525. |
[5] | Lei XU, Xiaopeng LIU, Yongyu WANG. Early warning analysis of the thermal runaway process of full-size prefabricated cabin storage tank [J]. Energy Storage Science and Technology, 2022, 11(8): 2463-2470. |
[6] | Shuang SHI, Nawei LYU, Jingxuan MA, Kangyong YIN, Lei SUN, Ning ZHANG, Yang JIN. Comparative study on the effectiveness of different types of gas detection on the overcharge safety early warning of a lithium iron phosphate battery energy storage compartment [J]. Energy Storage Science and Technology, 2022, 11(8): 2452-2462. |
[7] | Yong MA, Xiaohan LI, Lei SUN, Dongliang GUO, Jinggang YANG, Jianjun LIU, Peng XIAO, Guangjun QIAN. Parameter design of lithium-ion batteries based on a three-dimensional electrochemical thermal coupling lithium precipitation model [J]. Energy Storage Science and Technology, 2022, 11(8): 2600-2611. |
[8] | Liang TANG, Xiaobo YIN, Houfu WU, Pengjie LIU, Qingsong WANG. Demand for safety standards in the development of the electrochemical energy storage industry [J]. Energy Storage Science and Technology, 2022, 11(8): 2645-2652. |
[9] | Liping HUO, Weiling LUAN, Zixian ZHUANG. Development trend of lithium-ion battery safety technology for energy storage [J]. Energy Storage Science and Technology, 2022, 11(8): 2671-2680. |
[10] | ping ZHUO, Yanli ZHU, Chuang QI, Congjie WANG, Fei GAO. Combustion and explosion characteristics of lithium-ion battery pack under overcharge [J]. Energy Storage Science and Technology, 2022, 11(8): 2471-2479. |
[11] | Zhicheng CAO, Kaiyun ZHOU, Jiali ZHU, Gaoming LIU, Min YAN, Shun TANG, Yuancheng CAO, Shijie CHENG, Weixin ZHANG. Patent analysis of fire-protection technology of lithium-ion energy storage system [J]. Energy Storage Science and Technology, 2022, 11(8): 2664-2670. |
[12] | Jianxin LU, Ying ZHANG, Chuyuan MA, Kang DENG, Chunying LEI. Study on fire-extinguishing performance of hydrogel on lithium-iron-phosphate batteries [J]. Energy Storage Science and Technology, 2022, 11(8): 2637-2644. |
[13] | Yue ZHANG, Depeng KONG, Ping PING. Performance and design optimization of a cold plate for inhibiting thermal runaway propagation of lithium-ion battery packs [J]. Energy Storage Science and Technology, 2022, 11(8): 2432-2441. |
[14] | Laifeng SONG, Wenxin MEI, Zhuangzhuang JIA, Qingsong WANG. Analysis of thermal runaway characteristics of 280 Ah large LiFePO4 battery under adiabatic conditions [J]. Energy Storage Science and Technology, 2022, 11(8): 2411-2417. |
[15] | Hang YU, Ying ZHANG, Chaohang XU, Sihan YU. Research progress of thermal runaway prevention and control technology for lithium battery energy storage systems [J]. Energy Storage Science and Technology, 2022, 11(8): 2653-2663. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||