Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (10): 3051-3061.doi: 10.19799/j.cnki.2095-4239.2022.0480
• Energy Storage Materials and Devices • Previous Articles Next Articles
Jun WANG1,2(), Xuequan ZHANG1,2, Yafei LIU1,2(), Yanbin CHEN1,2()
Received:
2022-08-25
Revised:
2022-09-01
Online:
2022-10-05
Published:
2022-10-10
Contact:
Yafei LIU, Yanbin CHEN
E-mail:wangjun@easpring.com;liuyafei@easpring.com;chenyanbin@e aspring.com
CLC Number:
Jun WANG, Xuequan ZHANG, Yafei LIU, Yanbin CHEN. Research progress of high capacity Li-Mn-rich cathode materials[J]. Energy Storage Science and Technology, 2022, 11(10): 3051-3061.
Table 1
Modification methode and electrochemical performance comparsion of LMR cathode materials"
Modification method | LMR materials | Voltagerange | Discharge capacity/(mAh/g) | Rate capability (1 C/0.1 C)/% | Capacity retention/% | Voltage retention/% | Ref. |
---|---|---|---|---|---|---|---|
K+ doping | Li1.151K0.013Mn0.552Co0.146Ni0.145O2 | 2.0-4.8 V | 315 @ 0.1 C | ~73 | 82 (2 C, 110cyc. ) | — | [ |
Ti4+ doping | Li1.175Ti0.025Mn0.54Co0.13Ni0.13O2 | 2.0-4.8 V | 320 @ 0.1 C | ~77 | 72 (0.2 C, 300cyc.) | 83.6 | [ |
Nb5+ doping | Li1.2Mn0.54Ni0.13Co0.13O2 | 2.0-4.8 V | 320 @ 0.1 C | ~76 | 95 (0.1 C, 100cyc.) | 94.7 | [ |
Zr4+ doping | Li1.2Mn0.54Ni0.13Co0.13O2 | 2.0-4.8 V | 250 @ 0.1 C | ~72 | 86 (1/3 C, 100cyc.) | — | [ |
AlF3 coating | Li1.2Ni0.15Co0.10Mn0.55O2 | 2.0-4.8 V | 250 @ 0.1 C | — | 94 (1/3 C, 130cyc.) | 87.5 | [ |
N-doped C coating | Li1.2Mn0.6Ni0.2O2 | 2.0-4.8 V | 296 @ 0.1 C | ~72 (5C/0.25C) | 90 (1C, 500cyc.) | 84.4 | [ |
H2SO4 treatment | Li1.143Mn0.544Ni0.136Co0.136O2 | 2.0-4.8 V | 287 @ 0.05 C | — | 99.2 (0.1 C, 50cyc.) | 98.5 | [ |
CO2 treatment | Li1.144Mn0.544Ni0.136Co0.136O2 | 2.0-4.8 V | 301 @ 0.05 C | 86.2 | 93.8 (0.5 C, 100cyc.) | — | [ |
O2/O3 hybrid | — | 2.0-4.8 V | 302 @ 0.1 C | — | 93.4 (0.5 C, 100cyc.) | 96.4% | [ |
Single crystal | Li1.2Ni0.2Mn0.6O2 | 2.0-4.8 V | 230 @ 0.1 C | 72.2 | 92 (1 C, 200cyc.) | 96.5% | [ |
1 | 刘亚飞, 陈彦彬, 李建忠. 锂离子电池用多元正极材料的发展历程[J]. 矿冶, 2018, 27 (Suppl 1): 184-191. |
2 | LUO K, ROBERTS M R, HAO R, et al. Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen[J]. Nature Chemistry, 2016, 8(7): 684-691. |
3 | HAN S J, XIA Y G, WEI Z, et al. A comparative study on the oxidation state of lattice oxygen among Li1.14Ni0.136Co0.136Mn0.544O2, Li2MnO3, LiNi0.5Co0.2Mn0.3O2 and LiCoO2 for the initial charge-discharge[J]. Journal of Materials Chemistry A, 2015, 3(22): 11930-11939. |
4 | SATHIYA M, RAMESHA K, ROUSSE G, et al. High performance Li2Ru1- yMnyO3 (0.2≤y≤0.8) cathode materials for rechargeable lithium-ion batteries: Their understanding[J]. Chemistry of Materials, 2013, 25(7): 1121-1131. |
5 | KOGA H, CROGUENNEC L, MÉNÉTRIER M, et al. Different oxygen redox participation for bulk and surface: A possible global explanation for the cycling mechanism of Li1.20Mn0.54Co0.13Ni0.13O2[J]. Journal of Power Sources, 2013, 236: 250-258. |
6 | FREIRE M, KOSOVA N V, JORDY C, et al. A new active Li-Mn-O compound for high energy density Li-ion batteries[J]. Nature Materials, 2016, 15(2): 173-177. |
7 | CHEN L, SU Y, CHEN S, et al. Hierarchical Li1.2 Ni0.2 Mn0.6 O2 nanoplates with exposed{010}planes as high-performance cathode material for lithium-ion batteries[J]. Advanced Materials (Deerfield Beach, Fla), 2014, 26(39): 6756-6760. |
8 | ZHENG J M, GU M, GENC A, et al. Mitigating voltage fade in cathode materials by improving the atomic level uniformity of elemental distribution[J]. Nano Letters, 2014, 14(5): 2628-2635. |
9 | LIM S N, SEO J Y, JUNG D S, et al. Rate capability for Na-doped Li1.167Ni0.18Mn0.548Co0.105O2 cathode material and characterization of Li-ion diffusion using galvanostatic intermittent titration technique[J]. Journal of Alloys and Compounds, 2015, 623: 55-61. |
10 | LI Q, LI G S, FU C C, et al. K(+)-doped Li1.2Mn0.54Co0.13Ni0.13O2: A novel cathode material with an enhanced cycling stability for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2014, 6(13): 10330-10341. |
11 | FENG X, GAO Y R, BEN L B, et al. Enhanced electrochemical performance of Ti-doped Li1.2Mn0.54Co0.13Ni0.13O2 for lithium-ion batteries[J]. Journal of Power Sources, 2016, 317: 74-80. |
12 | LIU S,LIU Z,SHEN X,et al. Surface doping to enhance structural integrity and performance of Li-rich layered oxide[J]. Advanced Energy Materials 2018,8: doi: 10.1002/aenm.201802105. |
13 | PARK S H, SUN Y K. Synthesis and electrochemical properties of layered Li[Li0.15Ni(0.275- x/2)AlxMn(0.575-x/2)]O2 materials prepared by sol-gel method[J]. Journal of Power Sources, 2003, 119/120/121: 161-165. |
14 | JIN X, XU Q J, LIU H M, et al. Excellent rate capability of Mg doped Li[Li0.2Ni0.13Co0.13Mn0.54]O2 cathode material for lithium-ion battery[J]. Electrochimica Acta, 2014, 136: 19-26. |
15 | LI X, ZHANG K, MITLIN D, et al. Fundamental insight into Zr modification of Li-and Mn-rich cathodes: combined transmission electron microscopy and electrochemical impedance spectroscopy study[J]. Chemistry of Materials, 2018, 30(8): 2566-2573. |
16 | YAMAMOTO S, NOGUCHI H, ZHAO W W. Improvement of cycling performance in Ti substituted 0.5Li2MnO3-0.5LiNi0.5Mn0.5O2 through suppressing metal dissolution[J]. Journal of Power Sources, 2015, 278: 76-86. |
17 | KIM S M, JIN B S, LEE S M, et al. Effects of the fluorine-substitution and acid treatment on the electrochemical performances of 0.3Li2MnO3 ·0.7LiMn0.60Ni0.25Co0.15O2 cathode material for Li-ion battery[J]. Electrochimica Acta, 2015, 171: 35-41. |
18 | LIM S N, SEO J Y, JUNG D S, et al. The crystal structure and electrochemical performance of Li1.167Mn0.548Ni0.18Co0.105O2 composite cathodes doped and co-doped with Mg and F[J]. Journal of Electroanalytical Chemistry, 2015, 740: 88-94. |
19 | LEE J, KITCHAEV D A, KWON D H, et al. Reversible Mn2+/Mn4+ double redox in lithium-excess cathode materials[J]. Nature, 2018, 556(7700): 185-190. |
20 | WU Y, MANTHIRAM A. High capacity, surface-modified layered Li[Li(1- x)/3Mn(2- x)/3Nix/3Cox/3]O2 cathodes with low irreversible capacity loss[J]. Electrochemical and Solid-State Letters, 2006,9(5):A221-A224. |
21 | ZHAO J Q, AZIZ S, WANG Y. Hierarchical functional layers on high-capacity lithium-excess cathodes for superior lithium ion batteries[J]. Journal of Power Sources, 2014, 247: 95-104. |
22 | WU F, LI N, SU Y F, et al. Can surface modification be more effective to enhance the electrochemical performance of lithium rich materials? [J]. Journal of Materials Chemistry, 2012, 22(4): 1489-1497. |
23 | ZHENG J, GU M, XIAO J, et al. Functioning mechanism of AlF3 coating on the Li-and Mn-rich cathode materials[J]. Chemistry of Materials, 2014,26(22):6320-6327. |
24 | WU Y, MURUGAN A, MANTHIRAM A. Surface modification of high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathodes by AlPO4[J]. Journal of The Electrochemical Society. 2008,155(9):A635-A641. |
25 | WANG Q Y, LIU J, MURUGAN A, et al. High capacity double-layer surface modified Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode with improved rate capability[J]. Journal of Materials Chemistry, 2009, 19: 4965-4972. |
26 | MIAO X W, NI H, ZHANG H, et al. Li2ZrO3-coated 0.4Li2MnO3 ·0.6LiNi1/3Co1/3Mn1/3O2 for high performance cathode material in lithium-ion battery[J]. Journal of Power Sources, 2014, 264: 147-154. |
27 | LIU X, SU Q, ZHANG C, et al. Enhanced electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode with an ionic conductive LiVO3 coating layer[J]. ACS Sustainable Chemistry & Engineering, 2015,4(1):255-263. |
28 | XIN Y L, QI L Y, ZHANG Y W, et al. Organic solvent-assisted free-standing Li2MnO3 ·LiNi1/3Co1/3Mn1/3O2 on 3D graphene as a high energy density cathode[J]. Chemical Communications (Cambridge, England), 2015, 51(91): 16381-16384. |
29 | YU D Y W, YANAGIDA K, NAKAMURA H. Surface modification of Li-excess Mn-based cathode materials[J]. Journal of the Electrochemical Society, 2010, 157(11): A1177. |
30 | GUO H C, WEI Z, JIA K, et al. Abundant nanoscale defects to eliminate voltage decay in Li-rich cathode materials[J]. Energy Storage Materials, 2019, 16: 220-227. |
31 | QIU B, ZHANG M H, WU L J, et al. Gas-solid interfacial modification of oxygen activity in layered oxide cathodes for lithium-ion batteries[J]. Nature Communications, 2016, 7: 12108. |
32 | ERICKSON E M,SCLAR H,SCHIPPER F, et al. High-temperature treatment of Li-rich cathode materials with ammonia: Improved capacity and mean voltage stability during cycling[J]. Advanced Energy Materials. 2017: doi: 10.1002/aenm.201700708. |
33 | CHEN Y F, LIU Y C, ZHANG J C, et al. Constructing O2/O3 homogeneous hybrid stabilizes Li-rich layered cathodes[J]. Energy Storage Materials, 2022, 51: 756-763. |
34 | CAO X,SUN J,CHANG Z,et al. Enabling long-term cycling stability within layered Li-rich cathode materials by O2/O3-type biphasic design strategy[J]. Advanced Functional Materials, 2022: doi:10.1002/adfm.202205199. |
35 | SUN J,SHENG C,CAO X,et al. Restraining oxygen release and suppressing structure distortion in single-crystal Li-rich layered cathode materials[J]. Advanced Functional Materials, 2021:doi:10.1002/adfm.202110295. |
36 | DING X K, LUO D, CUI J X, et al. An ultra-long-life lithium-rich Li1.2Mn0.6Ni0.2O2 cathode by three-in-one surface modification for lithium-ion batteries[J]. Angewandte Chemie International Edition, 2020, 59(20): 7778-7782. |
[1] | Zhizhan LI, Jinlei QIN, Jianing LIANG, Zhengrong LI, Rui WANG, Deli WANG. High-nickel ternary layered cathode materials for lithium-ion batteries: Research progress, challenges and improvement strategies [J]. Energy Storage Science and Technology, 2022, 11(9): 2900-2920. |
[2] | Zhen YAO, Qi ZHANG, Rui WANG, Qinghua LIU, Baoguo WANG, Ping MIAO. Application of biomass derived carbon materials in all vanadium flow battery electrodes [J]. Energy Storage Science and Technology, 2022, 11(7): 2083-2091. |
[3] | Chang SUN, Zerong DENG, Ningbo JIANG, Lulu ZHANG, Hui FANG, Xuelin YANG. Recent research progress of sodium vanadium fluorophosphate as cathode material for sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1184-1200. |
[4] | Tianxin XU, Xikun TIAN, Jun YAN, Qiang YE, Changying ZHAO. Thermochemical energy storage reaction performance of CaCO3 with TiO2 doping [J]. Energy Storage Science and Technology, 2022, 11(1): 1-8. |
[5] | Dewang SUN, Bizhi JIANG, Tao YUAN, Shiyou ZHENG. Research progress of titanium niobium oxide used as anode of lithium-ion batteries [J]. Energy Storage Science and Technology, 2021, 10(6): 2127-2143. |
[6] | Qiang LI, Junnan WANG, Hong SUN. Graphite felt electrode modified with MWCNTs-COOH-NS for vanadium flow battery [J]. Energy Storage Science and Technology, 2021, 10(6): 2097-2105. |
[7] | Jian YIN, Jiling DONG, Hao DING, Fang LI. Research progress of transition metal oxide anode materials for lithium-ion batteries [J]. Energy Storage Science and Technology, 2021, 10(3): 995-1001. |
[8] | Peng GAO, Shan ZHANG, Liubin BEN, Wenwu ZHAO, Zhongzhu LIU, Rogerio RIBAS, Yongming ZHU, Xuejie HUANG. Application of niobium in lithium ion batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1443-1453. |
[9] | Jing YANG, Gaozhan LIU, Lin SHEN, Xiayin YAO. Research progress on NASICON-structured sodium solid electrolytes and their derived solid state sodium batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1284-1299. |
[10] | WANG Qiushi, SUN Miaomiao, LIU Qinghua, YANG Hong CHEN Jingyun, LIU Junqing, LIANG Wenbin. Surface modification of carbon fiber paper for vanadium redox flow battery [J]. Energy Storage Science and Technology, 2020, 9(3): 714-719. |
[11] | LIU Tao, QIU Daping, XIA Jiannian, DENG Jiahong, CHEN Zhiyu, WEI Jinying, LI Min, YANG Ru. Structure and properties of cathode materials for ion batteries [J]. Energy Storage Science and Technology, 2019, 8(S1): 1-17. |
[12] | REN Ya, WANG Ying, XU Zhiyu, YAN Xiao, HUANG Bixiong. Graphite modified LiNi1/3Co1/3Mn1/3O2 cathodes with improved performance for lithium-ion battery [J]. Energy Storage Science and Technology, 2019, 8(5): 935-940. |
[13] | ZHANG Lin, ZHANG Jing, CHENG Jianfeng, LI Qing, ZHANG Yinggang. Research progress in blending modification cathode materials for lithium ion batteries [J]. Energy Storage Science and Technology, 2019, 8(5): 838-842. |
[14] | LI Yu, ZHAO Huichun, BAI Ying, WU Feng, WU Chuan. Progress in the modification of lithium-rich manganese-based layered cathode material [J]. Energy Storage Science and Technology, 2018, 7(3): 394-403. |
[15] | SUN Huajun1,2, HONG Tingting1, LIU Xiaofang3, SUI Huiting2, LIU Pengdong1. Improvement of photovoltaic properties of bismuth ferrite film based solar cell using organic and inorganic interface layers [J]. Energy Storage Science and Technology, 2017, 6(6): 1340-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||