Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (2): 329-338.doi: 10.19799/j.cnki.2095-4239.2022.0537
• Energy Storage Materials and Devices • Next Articles
Guihong GAO1(), Shenshen LI1, Fuyuan LIU1, Xiangkun WU2, Yanxia LIU1,2(
)
Received:
2022-09-20
Revised:
2022-11-09
Online:
2023-02-05
Published:
2023-02-24
Contact:
Yanxia LIU
E-mail:1019660339@qq.com;yxliu@ipe.ac.cn
CLC Number:
Guihong GAO, Shenshen LI, Fuyuan LIU, Xiangkun WU, Yanxia LIU. Study on the influence of particle composition on the performance of lithium slurry batteries[J]. Energy Storage Science and Technology, 2023, 12(2): 329-338.
Table 2
Test results of conductivity of different electrode pastes"
项目 | 电极浆料 | ||||||
---|---|---|---|---|---|---|---|
10∶0 | 9∶1 | 7∶3 | 5∶5 | 3∶7 | 1∶9 | 0∶10 | |
测试点1 | 41.41 | 45.43 | 62.7 | 65.96 | 76.62 | 1∶9 | 123.2 |
测试点2 | 41.43 | 45.33 | 62.67 | 66.72 | 76.62 | 63.08 | 123.3 |
测试点3 | 41.56 | 45.31 | 62.75 | 67.15 | 76.61 | 63.12 | 123.3 |
测试点4 | 41.67 | 45.48 | 62.78 | 67.8 | 76.62 | 63.16 | 123.3 |
测试点5 | 41.75 | 45.41 | 62.73 | 68.33 | 76.82 | 63.33 | 123.3 |
测试点6 | 41.86 | 45.4 | 62.73 | 68.36 | 76.81 | 63.45 | 123.4 |
测试点7 | 41.87 | 45.33 | 62.75 | 68.58 | 76.8 | 63.49 | 123.4 |
测试点8 | 41.94 | 45.35 | 62.76 | 69.04 | 77.01 | 63.71 | 123.5 |
测试点9 | 42.03 | 45.28 | 62.79 | 69.49 | 77.02 | 63.81 | 123.5 |
标准差 | 0.222 | 0.093 | 0.036 | 1.188 | 0.172 | 63.85 | 0.104 |
1 | 张彬, 陈永翀, 张艳萍, 等. 锂浆料电池国际专利技术分析[J]. 储能科学与技术, 2017, 6(5): 1000-1007. |
ZHANG B, CHEN Y C, ZHANG Y P, et al. The international patent technology analysis on lithium slurry battery[J]. Energy Storage Science and Technology, 2017, 6(5): 1000-1007. | |
2 | YET-MING C, MINAI D, RICHARD H, et al. Compiler: US9362583B2[P]. 2016-06-07. |
3 | VU A, QIAN Y Q, STEIN A. Porous electrode materials for lithium-ion batteries-how to prepare them and what makes them special[J]. Advanced Energy Materials, 2012, 2(9): 1056-1085. |
4 | USSEGLIO-VIRETTA F L E, FINEGAN D P, COLCLASURE A, et al. Quantitative relationships between pore tortuosity, pore topology, and solid particle morphology using a novel discrete particle size algorithm[J]. Journal of the Electrochemical Society, 2020, 167(10): doi: 10.1149/1945-7111/ab913b. |
5 | SANTOKI J, DAUBNER S, SCHNEIDER D, et al. Effect of tortuosity, porosity, and particle size on phase-separation dynamics of ellipsoid-like particles of porous electrodes: Cahn-Hilliard-type phase-field simulations[J]. Modelling and Simulation in Materials Science and Engineering, 2021, 29(6): 065010. |
6 | 张大康. 水泥分组分最佳粒度分布探讨[J]. 水泥, 2008(6): 24-28. |
ZHANG D K. Discussion on optimum particle size distribution of cement components[J]. Cement, 2008(6): 24-28. | |
7 | 张大康. 高细石灰石粉对水泥—矿渣粉—粉煤灰胶凝体系性能的优化[C]//全国高性能混凝土和矿物掺合料的研究与工程应用技术交流会论文集, 2006: 371-381. |
ZHANG D K.Optimization of properties of cement-slag powder-fly ash cementitious system with high fine limestone powder[C]//Proceedings of National Symposium on Research and Engineering Application of High Performance Concrete and Mineral Admixtures, 2006: 371-381. | |
8 | 贺阳, 王永海, 张彦胜, 等. 自燃煤矸石粉体颗粒级配的复合改性研究[J]. 混凝土, 2015(6): 100-102. |
HE Y, WANG Y H, ZHANG Y S, et al. Composite modification research about microscopic particle size distribution of self-igniting coal gangue admixture[J]. Concrete, 2015(6): 100-102. | |
9 | FULLER W B, THOMPSON S E. The laws of proportioning concrete[J]. Transactions of the American Society of Civil Engineers, 1907, 59(2): 67-143. |
10 | 冯彩梅, 巩宇, 陈永翀, 等. 球磨法制备锂离子液流电池石墨负极浆料的性能研究[J]. 材料工程, 2018, 46(2): 1-8. |
FENG C M, GONG Y, CHEN Y C, et al. Performance study of graphite anode slurry in lithium-ion flow battery by ball milling[J]. Journal of Materials Engineering, 2018, 46(2): 1-8. | |
11 | LI Q, CAO Z, WAHYUDI W, et al. Unraveling the new role of an ethylene carbonate solvation shell in rechargeable metal ion batteries[J]. ACS Energy Letters, 2021, 6(1): 69-78. |
12 | MING J, LI M L, KUMAR P, et al. Redox species-based electrolytes for advanced rechargeable lithium ion batteries[J]. ACS Energy Letters, 2016, 1(3): 529-534. |
13 | CAILLOL J M, LEVESQUE D, WEIS J J. Theoretical calculation of ionic solution properties[J]. The Journal of Chemical Physics, 1986, 85(11): 6645-6657. |
14 | THORAT I V, STEPHENSON D E, ZACHARIAS N A, et al. Quantifying tortuosity in porous Li-ion battery materials[J]. Journal of Power Sources, 2009, 188(2): 592-600. |
15 | WOOD M, LI J L, DU Z J, et al. Impact of secondary particle size and two-layer architectures on the high-rate performance of thick electrodes in lithium-ion battery pouch cells[J]. Journal of Power Sources, 2021, 515: doi: 10.1016/j.jpowsour.2021.230429. |
16 | LIU H, ZHAO X X, et al. Effect of spherical particle size on the electrochemical properties of lithium iron phosphate[J]. Journal of Wuhan University of Technology-Mater Sci Ed, 2019, 34(3): 549-557. |
17 | SAMAL S. Effect of shape and size of filler particle on the aggregation and sedimentation behavior of the polymer composite[J]. Powder Technology, 2020, 366: 43-51. |
18 | 乔龄山. 关于水泥颗粒分布及其作用的部分研究成果介绍[J]. 水泥, 2007,(9):1-7. |
QIAO L S. Introduction of some research results on cement particle distribution and its effect[J]. Cement, 2007(9):1-7. | |
19 | 乔龄山. 关于水泥颗粒分布及其作用的部分研究成果介绍(续)[J]. 水泥, 2007(10): 5-9. |
QIAO L S. Introduction of some research results on cement particle distribution and its function (continued)[J]. Cement, 2007(10): 5-9. | |
20 | 涂亚楠. 颗粒级配优化及界面改性提高褐煤成浆浓度的研究[D]. 北京: 中国矿业大学(北京), 2013. |
TU Y N. Experimental research on improving lianite slurry-ability by packing efficiency optimizing and interface modification[D]. Beijing: China University of Mining & Technology, Beijing, 2013. | |
21 | 张荣曾, 刘炯天, 徐志强, 等. 连续粒度分布的充填效率[J]. 中国矿业大学学报, 2002, 31(6): 552-556. |
ZHANG R Z, LIU J T, XU Z Q, et al. Packing efficiency of continuously distributed particles[J]. Journal of China University of Mining & Technology, 2002, 31(6): 552-556. | |
22 | 郭晔, 朱宝林, 黄新, 等. 浆体中连续粒径粉体的堆积密度计算方法[J]. 混凝土, 2005(6): 20-23. |
GUO Y, ZHU B L, HUANG X, et al. A calculation method for packing density of powder in paste with continuous particle size distribution[J]. Concrete, 2005(6): 20-23. | |
23 | STOVALL T, DE LARRARD F, BUIL M. Linear packing density model of grain mixtures[J]. Powder Technology, 1986, 48(1): 1-12. |
24 | 黄新, 朱宝林, 郭晔, 等. 连续粒径粉体在浆体中的堆积密度[J]. 北京航空航天大学学报, 2006, 32(4): 461-465, 470. |
HUANG X, ZHU B L, GUO Y, et al. Packing density of powder in paste with continuous grain size distribution[J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(4): 461-465, 470. | |
25 | 李琛坤, 王帅, 黄俊. 电化学阻抗谱物理模型求解方法[J]. 储能科学与技术, 2022, 11(3): 912-920. |
LI C K, WANG S, HUANG J. Method for solving physical model of electrochemical impedance spectroscopy[J]. Energy Storage Science and Technology, 2022, 11(3): 912-920. | |
26 | BARSOUKOV E, KIM D H, LEE H S, et al. Comparison of kinetic properties of LiCoO2 and LiTi0.05Mg0.05Ni0.7Co0.2O2 by impedance spectroscopy[J]. Solid State Ionics, 2003, 161(1/2): 19-29. |
27 | 杨绍斌, 梁正. 锂离子电池制造工艺原理与应用[M]. 北京: 化学工业出版社, 2020. |
YANG S B, LIANG Z. Fundementals and applications of the manufacturing process of lithium lon batteries[M]. Beijing: Chemical Industry Press, 2020. | |
28 | ARMSTRONG M J, BERIS A N, ROGERS S A, et al. Dynamic shear rheology and structure kinetics modeling of a thixotropic carbon black suspension[J]. Rheologica Acta, 2017, 56(10): 811-824. |
29 | ANDREASEN A M. Ueber Die beziehung zwischen kornabstufung und zwischenraum in produkten aus losen Körnern (mit einigen experimenten)[J]. Kolloid-Zeitschrift, 1930, 50(3): 217-228. |
[1] | Fan YANG, Jiarui HE, Ming LU, Lingxia LU, Miao YU. SOC estimation of lithium-ion batteries based on BP-UKF algorithm [J]. Energy Storage Science and Technology, 2023, 12(2): 552-559. |
[2] | Xueqing SHEN, Wei CHEN. Thermal management performance of batteries with embedded tree-like fins for phase transition layers [J]. Energy Storage Science and Technology, 2023, 12(2): 459-467. |
[3] | Yuhao ZHOU, Luoyun XÜ, Zhongping ZHANG, Lingchong LIU, Bin NAN, Haiqi ZHAO. Construction and simulation analysis of thermoelectric coupling model of lithium battery based on digital twin [J]. Energy Storage Science and Technology, 2023, 12(2): 536-543. |
[4] | Dongmei SHI, Jing WANG. Analysis of battery technology and industry development strategy and trend in China, Japan, and South Korea [J]. Energy Storage Science and Technology, 2023, 12(2): 615-628. |
[5] | Wenkai ZHU, Xing ZHOU, Yajie LIU, Tao ZHANG, Yuanming SONG. Real time state of charge estimation method of lithium-ion battery based on recursive gated recurrent unit neural network [J]. Energy Storage Science and Technology, 2023, 12(2): 570-578. |
[6] | Zhifu WANG, Wei LUO, Yuan YAN, Song XU, Wenmei HAO, Conglin ZHOU. Fault diagnosis of lithium-ion battery sensors using GAPSO-FNN [J]. Energy Storage Science and Technology, 2023, 12(2): 602-608. |
[7] | Deliu ZHANG, Yan ZHANG, Hai WANG, Jiadong WANG, Xuanwen GAO, Chaomeng LIU, Dongrun YANG, Wenbin LUO. Optimization of high nickel cathode materials for lithium ion batteries by magnesium doped heterogeneous aluminum oxide coating [J]. Energy Storage Science and Technology, 2023, 12(2): 339-348. |
[8] | Jun SHENG, Yimin FU, Huigen YU. Structure simulation of large soft pack module for energy storage [J]. Energy Storage Science and Technology, 2023, 12(2): 579-584. |
[9] | Lulu LI, Zhengshun TAO, Tinglong PAN, Weilin YANG, Guanyang HU. Research on fractional modeling and SOC estimation strategy for lithium batteries [J]. Energy Storage Science and Technology, 2023, 12(2): 544-551. |
[10] | Qiantong LIU, Yuanxiu XING. Remaining life prediction of lithium-ion battery based on VMD-PSO-GRU model [J]. Energy Storage Science and Technology, 2023, 12(1): 236-246. |
[11] | Mengyu TIAN, Yida WU, Junfeng HAO, Jing ZHU, Guanjun CEN, Ronghan QIAO, Xiaoyu SHEN, Hongxiang JI, Zhou JIN, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Oct. 1, 2022 to Nov. 30, 2022) [J]. Energy Storage Science and Technology, 2023, 12(1): 1-15. |
[12] | Yue PAN, Xuebing HAN, Minggao OUYANG, Huahua REN, Wei LIU, Yuejun YAN. Research on the detection algorithm for internal short circuits in lithium-ion batteries and its application to real operating data [J]. Energy Storage Science and Technology, 2023, 12(1): 198-208. |
[13] | Sujin GE, Long ZHANG, Xiaohua YANG, Wenhao SHAN, Guangqiang XU. Simulation study on the influence of air supply method on the cooling effect of energy storage battery cluster [J]. Energy Storage Science and Technology, 2023, 12(1): 150-154. |
[14] | Han ZHENG, Peipei LAI, Xiaohua TIAN, Zhuo SUN, Zhejuan ZHANG. Performance of large-scale silicon particles coated with multistage carbon as anode materials for lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(1): 23-34. |
[15] | Yuzhu GUO, Chunjun LIANG, Fulin SUN, Hongkang GONG, Qi SONG, Ting ZHU, Chenhui ZHANG. Rapid rechargeable aluminum-ion batteries with carbon electrode paste as a cathode material [J]. Energy Storage Science and Technology, 2023, 12(1): 16-22. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||