Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (5): 1664-1674.doi: 10.19799/j.cnki.2095-4239.2022.0750
• Energy Storage System and Engineering • Previous Articles Next Articles
Luhao HAN(), Ziyang WANG, Xiaolong HE, Chunshan HE, Xiaolong SHI, Bin YAO()
Received:
2022-12-14
Revised:
2023-01-13
Online:
2023-05-05
Published:
2023-05-29
Contact:
Bin YAO
E-mail:hanluhao@mail.ustc.edu.cn;binyao@ustc.edu.cn
CLC Number:
Luhao HAN, Ziyang WANG, Xiaolong HE, Chunshan HE, Xiaolong SHI, Bin YAO. The effect of water mist strategies on thermal runaway fire suppression of large-capacity NCM lithium-ion battery[J]. Energy Storage Science and Technology, 2023, 12(5): 1664-1674.
1 | 余雪松. “十三五”期间我国锂离子电池产业发展良好[J]. 新材料产业, 2021(4): 2-8. |
YU X S. During the 13th Five-Year Plan period, China's lithium ion battery industry developed well[J]. Advanced Materials Industry, 2021(4): 2-8. | |
2 | WANG Q S, PING P, ZHAO X J, et al. Thermal runaway caused fire and explosion of lithium-ion battery[J]. Journal of Power Sources, 2012, 208: 210-224. |
3 | LIU Y J, DUAN Q L, XU J J, et al. Experimental study on the efficiency of dodecafluoro-2-methylpentan-3-one on suppressing lithium-ion battery fires[J]. RSC Advances, 2018, 8(73): 42223-42232. |
4 | MALONEY T. Extinguishment of lithium-ion and lithium-metal battery fires[R]. Department of Transportation, Federal Aviation Administration, 2014. |
5 | XU J J, GUO P, DUAN Q L, et al. Experimental study of the effectiveness of three kinds of extinguishing agents on suppressing lithium-ion battery fires[J]. Applied Thermal Engineering, 2020, 171: doi: 10.1016/j.applthermaleng.2020.115076 |
6 | 郭莉, 吴静云, 黄峥, 等. 不同压强细水雾对磷酸铁锂电池模组的灭火效果[J]. 高电压技术, 2021, 47(3): 1002-1011. |
GUO L, WU J Y, HUANG Z, et al. Fire extinguishing effect of water mist with different pressures on LFP battery module[J]. High Voltage Engineering, 2021, 47(3): 1002-1011. | |
7 | ZHU M X, ZHU S B, GONG J H, et al. Experimental study on fire and explosion characteristics of power lithium batteries with surfactant water mist[J]. Procedia Engineering, 2018, 211: 1083-1090. |
8 | ZHANG L, LI Y Q, DUAN Q L, et al. Experimental study on the synergistic effect of gas extinguishing agents and water mist on suppressing lithium-ion battery fires[J]. Journal of Energy Storage, 2020, 32: doi: 10.1016/j.est.2020.101801 |
9 | ZHANG L, DUAN Q L, MENG X D, et al. Experimental investigation on intermittent spray cooling and toxic hazards of lithium-ion battery thermal runaway[J]. Energy Conversion and Management, 2022, 252: doi: 10.1016/j.enconman.2021.115091. |
10 | FENG X N, LU L G, OUYANG M G, et al. A 3D thermal runaway propagation model for a large format lithium ion battery module[J]. Energy, 2016, 115: 194-208. |
11 | 公安部消防产品合格评定中心. 电动客车锂离子动力电池箱火灾防控装置通用技术要求: CCCF/XFJJ-01[S]. |
Fire Products Conformity Assessment Center of Ministry of Public Security. General technical requirements for fire prevention and control device of lithium ion power battery box for electric bus: CCCF/XFJJ-01[S]. | |
12 | 冯旭宁. 车用锂离子动力电池热失控诱发与扩展机理、建模与防控[D]. 北京: 清华大学. |
FENG X N. Mechanism, modeling, prevention and control of thermal runaway of automotive lithium-ion power battery[D]. Beijing: Tsinghua University. | |
13 | 马迷娜. 车用三元锂离子电池组电气故障特征及其诊断方法研究[D]. 合肥: 中国科学技术大学. |
MA M N. Study on electrical fault characteristics and diagnosis methods of ternary lithium-ion battery pack for vehicles[D]. Hefei: University of Science and Technology of China. | |
14 | 陈培瑶, 庄爽, 刘琦, 等. 全氟己酮灭火剂热裂解产生氟化氢研究[J]. 消防科学与技术, 2020, 39(9): 1277-1279. |
CHEN P Y, ZHUANG S, LIU Q, et al. Study on the generation of hydrogen fluoride by thermal decomposition of C6F-ketone extinguishing agent[J]. Fire Science and Technology, 2020, 39(9): 1277-1279. | |
15 | 曹丽英, 张品, 张永丰, 等. 七氟丙烷灭火剂热解规律研究[J]. 消防科学与技术, 2014, 33(12): 1426-1428, 1439. |
CAO L Y, ZHANG P, ZHANG Y F, et al. A study on the pyrolysis regularity of HFC-227ea[J]. Fire Science and Technology, 2014, 33(12): 1426-1428, 1439. | |
16 | FENG X N, SUN J, OUYANG M G, et al. Characterization of penetration induced thermal runaway propagation process within a large format lithium ion battery module[J]. Journal of Power Sources, 2015, 275: 261-273. |
17 | 谢卓衡, 王子阳, 张刚, 等. 全氟己酮及细水雾灭火装置对大容量三元锂离子电池的灭火实验[J]. 储能科学与技术, 2022, 11(2): 652-659 |
XIE Z H, WANG Z Y, ZHANG G, et al. Experimental study on fire extinguishing of large-capacity ternary lithium-ion battery by perfluorohexanone and water mist fire extinguishing device[J]. Energy Storage Science and Technology, 2022, 11(2): 652-659 | |
18 | 细水雾灭火系统技术规范: GB/T 20295—2006[S]. |
19 | 李晓康, 徐志胜. 受限空间脉冲细水雾灭火数值模拟[J]. 安全与环境学报, 2017, 17(2): 537-541. |
LI X K, XU Z S. Numerical simulation for the water mist fire-extinguishing performance via the pulsate discharge mode in a confined space[J]. Journal of Safety and Environment, 2017, 17(2): 537-541. | |
20 | HUANG Z H, LI X, WANG Q S, et al. Experimental investigation on thermal runaway propagation of large format lithium ion battery modules with two cathodes[J]. International Journal of Heat and Mass Transfer, 2021, 172: doi: 10.1016/j.ijheatmasstransfer.2021.121077. |
21 | SUN J H, MAO B B, WANG Q S. Progress on the research of fire behavior and fire protection of lithium ion battery[J]. Fire Safety Journal, 2021, 120: doi: 10.1016/j.firesaf.2020.103119. |
22 | 赵春朋. 受限空间三元锂离子电池热失控燃爆危险性研究[D]. 合肥: 中国科学技术大学. |
ZHAO C P. Study on the risk of thermal runaway explosion of ternary lithium ion battery in confined space[D]. Hefei: University of Science and Technology of China. | |
23 | HUANG Z H, SHEN T, JIN K Q, et al. Heating power effect on the thermal runaway characteristics of large-format lithium ion battery with Li(Ni1/3Co1/3Mn1/3)O2 as cathode[J]. Energy, 2022, 239: doi: 10.1016/j.energy.2021.121885. |
24 | 何骁龙, 石晓龙, 王子阳, 等. 过充、过热及其共同作用下车用三元锂离子电池热失控特性[J]. 储能科学与技术, 2023, 12(1): 218-226. |
HE X L, SHI X L, WANG Z Y, et al. Experimental study on thermal runaway characteristics of vehicle NCM lithium-ion batteries under overcharge, overheating, and their combined effects[J]. Energy Storage Science and Technology, 2023, 12(1): 218-226. | |
25 | 刘江虹, 廖光煊, 厉培德, 等. 细水雾灭火技术研究与进展[J]. 科学通报, 2003, 48(8): 761-767. |
LIU J H, LIAO G X, LI P D, et al. Research and progress of water mist fire extinguishing technology[J]. Chinese Science Bulletin, 2003, 48(8): 761-767. |
[1] | Liyue HU, Xingyan YAO. Thermal runaway of lithium-ion batteries based on orthogonal test [J]. Energy Storage Science and Technology, 2023, 12(4): 1268-1277. |
[2] | Kuijie LI, Ping LOU, Minyuan GUAN, Jinlong MO, Weixin ZHANG, Yuancheng CAO, Shijie CHENG. A review of multi-dimensional signal evolution and coupling mechanism of lithium-ion battery thermal runaway [J]. Energy Storage Science and Technology, 2023, 12(3): 899-912. |
[3] | Zhixiang CHENG, Wei CAO, Bo HU, Yunfang CHENG, Xin LI, Lihua JIANG, Kaiqiang JIN, Qingsong WANG. Thermal runaway and explosion propagation characteristics of large lithium iron phosphate battery for energy storage station [J]. Energy Storage Science and Technology, 2023, 12(3): 923-933. |
[4] | Zhifu WANG, Wei LUO, Yuan YAN, Song XU, Wenmei HAO, Conglin ZHOU. Fault diagnosis of lithium-ion battery sensors using GAPSO-FNN [J]. Energy Storage Science and Technology, 2023, 12(2): 602-608. |
[5] | Xiaolong HE, Xiaolong SHI, Ziyang WANG, Luhao HAN, Bin YAO. Experimental study on thermal runaway characteristics of vehicle NCM lithium-ion batteries under overcharge, overheating, and their combined effects [J]. Energy Storage Science and Technology, 2023, 12(1): 218-226. |
[6] | Laifeng SONG, Wenxin MEI, Zhuangzhuang JIA, Qingsong WANG. Analysis of thermal runaway characteristics of 280 Ah large LiFePO4 battery under adiabatic conditions [J]. Energy Storage Science and Technology, 2022, 11(8): 2411-2417. |
[7] | Lei XU, Xiaopeng LIU, Yongyu WANG. Early warning analysis of the thermal runaway process of full-size prefabricated cabin storage tank [J]. Energy Storage Science and Technology, 2022, 11(8): 2463-2470. |
[8] | Shuang SHI, Nawei LYU, Jingxuan MA, Kangyong YIN, Lei SUN, Ning ZHANG, Yang JIN. Comparative study on the effectiveness of different types of gas detection on the overcharge safety early warning of a lithium iron phosphate battery energy storage compartment [J]. Energy Storage Science and Technology, 2022, 11(8): 2452-2462. |
[9] | ping ZHUO, Yanli ZHU, Chuang QI, Congjie WANG, Fei GAO. Combustion and explosion characteristics of lithium-ion battery pack under overcharge [J]. Energy Storage Science and Technology, 2022, 11(8): 2471-2479. |
[10] | Jianxin LU, Ying ZHANG, Chuyuan MA, Kang DENG, Chunying LEI. Study on fire-extinguishing performance of hydrogel on lithium-iron-phosphate batteries [J]. Energy Storage Science and Technology, 2022, 11(8): 2637-2644. |
[11] | Yue ZHANG, Depeng KONG, Ping PING. Performance and design optimization of a cold plate for inhibiting thermal runaway propagation of lithium-ion battery packs [J]. Energy Storage Science and Technology, 2022, 11(8): 2432-2441. |
[12] | Chengshan XU, Borui LU, Mengqi ZHANG, Huaibin WANG, Changyong JIN, Minggao OUYANG, Xuning FENG. Study on thermal runaway gas evolution in the lithium-ion battery energy storage cabin [J]. Energy Storage Science and Technology, 2022, 11(8): 2418-2431. |
[13] | Tao YIN, Longzhou JIA, Xiuliang CHANG, Zuoqiang DAI, Lili ZHENG. Research on thermal safety of soft-pack LiFePO4 battery after high-voltage float charge [J]. Energy Storage Science and Technology, 2022, 11(8): 2546-2555. |
[14] | Yang WANG, Xu LU, Yuxin ZHANG, Long LIU. Thermal runaway exhaust strategy of power battery [J]. Energy Storage Science and Technology, 2022, 11(8): 2480-2487. |
[15] | Qingsong ZHANG, Yang ZHAO, Tiantian LIU. Effects of state of charge and battery layout on thermal runaway propagation in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(8): 2519-2525. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||