Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (5): 1616-1624.doi: 10.19799/j.cnki.2095-4239.2023.0146
• Energy Storage Materials and Devices • Previous Articles Next Articles
Jidong ZHANG(), Zhan YANG, Jianguo HUANG()
Received:
2023-03-15
Revised:
2023-03-20
Online:
2023-05-05
Published:
2023-05-29
Contact:
Jianguo HUANG
E-mail:22037076@zju.edu.cn;jghuang@zju.edu.cn
CLC Number:
Jidong ZHANG, Zhan YANG, Jianguo HUANG. Fabrication and electrochemical performance of micro-nanostructured C/TiO2/CuMoO4 fibrous composite based on natural cellulose[J]. Energy Storage Science and Technology, 2023, 12(5): 1616-1624.
1 | GOODENOUGH J B, PARK K S. The Li-ion rechargeable battery: A perspective[J]. Journal of the American Chemical Society, 2013, 135(4): 1167-1176. |
2 | 高鹏, 张珊, 贲留斌, 等. 铌元素在锂离子电池中的应用[J]. 储能科学与技术, 2020, 9(5): 1443-1453. |
GAO P, ZHANG S, BEN L, et al. Application of niobium in lithium ion batteries[J]. Energy Storage Science and Technology, 2020, 9(5): 1443-1453. | |
3 | 刘柏男, 徐泉, 禇赓, 等. 锂离子电池高容量硅碳负极材料研究进展[J]. 储能科学与技术, 2016, 5(4): 417-421. |
LIU B, XU Q, CHU G, et al. Research progress on the nano-Si/C materials with high capacity for lithium-iom battery[J]. Energy Storage Science and Technology, 2016, 5(4): 417-421. | |
4 | HUANG Z X, WANG Y, ZHU Y G, et al. 3D graphene supported MoO2 for high performance binder-free lithium ion battery[J]. Nanoscale, 2014, 6(16): 9839-9845. |
5 | XU H, ZHANG H, FANG L, et al. Hierarchical molybdenum nitride nanochexes by a textured self-assembly in gas-solid phase for the enhanced application in lithium-ion batteries[J]. ACS Nano, 2015, 9(7): 6817-6825. |
6 | LIU X, ZHAO Y, DONG Y, et al. Synthesis of carbon-coated nanoplate α-Na2MoO4 and its electrochemical lithiation process as anode material for lithium-ion batteries[J]. Electrochimica Acta, 2015, 154: 94-101. |
7 | CHEN N, GAO Y, ZHANG M, et al. Electrochemical properties and sodium-storage mechanism of Ag2Mo2O7 as the anode material for sodium-ion batteries[J]. Chemistry-A European Journal, 2016, 22(21): 7248-7254. |
8 | VERMA R, RAMANUJAM K, VARADARAJU U V. Nano-crystalline Na2Mo2O7: A new high performance anode material[J]. Electrochimica Acta, 2016, 215: 192-199. |
9 | SHARMA N, SHAJU K, SUBBA RAO G V, et al. Carbon-coated nanophase CaMoO4 as anode material for lithium-ion batteries[J]. Chemistry of Materials, 2004, 16(3): 504-512. |
10 | ZHANG J, LI R, CHEN Q, et al. Porous carbon coated Li2MoO4 as high-performance anode materials for lithium-ion batteries[J]. Materials Letters, 2018, 233: 302-305. |
11 | SHANTHAPPA R, NARSIMULU D, KAKARLA A K, et al. Nitrogen-doped reduced graphene oxide incorporated porous rod-like cobalt molybdate as an anode for high-capacity long-life lithium-ion batteries[J]. International Journal of Energy Research, 2021, 45(13): 19509-19520. |
12 | DENIS D K, WANG G, HOU L, et al. Construction of conductive Ni-Co-Molybdate solid solution nanoparticles encapsulated in carbon nanofibers towards Li-ion batteries as high-rate anodes[J]. Electrochimica Acta, 2022, 402: 139564. |
13 | BUHRMESTER T, LEYZEROVICH N N, BRAMNIK K G, et al. Electrochemical intercalation of lithium in ternary metal molybdates MMoO4 (M=Cu, Zn)[J]. Materials Research Society Symposium Proceedings, 2003, 756: 261-266. |
14 | ZAKARIA M B, LI C, JI Q, et al. Self-construction from 2D to 3D: one-pot layer-by-layer assembly of graphene oxide sheets held together by coordination polymers[J]. Angewandte Chemie International Edition, 2016, 55(29): 8426-8430. |
15 | ARIGA K, NISHIKAWA M, MORI T, et al. Self-assembly as a key player for materials nano-architectonics[J]. Science and Technology of Advanced Materials, 2019, 20(1): 51-95. |
16 | JIA Y, LI J. Molecular assembly of Schiff Base interactions: Construction and application[J]. Chemical Reviews, 2015, 115(3): 1597-1621. |
17 | LI S, HUANG J G. Cellulose-rich nanofiber-based functional nanoarchitectures[J]. Advanced Materials, 2016, 28(6): 1143-1158. |
18 | LIN Z H, HUANG J G. Hierarchical nanostructures derived from cellulose for lithium-ion batteries[J]. Dalton Transactions, 2019, 48(38): 14221-14232. |
19 | LIN Z H, LI S, HUANG J G. Natural cellulose derived nanocomposites as anodic materials for lithium-ion batteries[J]. Chemical Record, 2020, 20(3): 187-208. |
20 | LIU X Y, GU Y Q, HUANG J G, Hierarchical, titania-coated, carbon nanofibrous material derived from a natural cellulosic substance[J]. Chemistry-A European Journal, 2010, 16(26): 7730-7740. |
21 | MANIVANNAN A, PUNNOOSE A, SEEHRA M S, Interaction of oxygen with nanophase carbons investigated by electron spin resonance spectroscopy[J]. Materials Research Society Symposium Proceedings, 1999, 593: 365-370. |
22 | TAN W C, LUAN J F. Investigation into the synthesis conditions of CuMoO4 by an in situ method and its photocatalytic properties under visible light irradiation[J]. RSC Advances, 2020, 10(16): 9745-9759. |
23 | PARK S K, LEE J, BONG S, et al. Scalable synthesis of few-layer MoS2 incorporated into hierarchical porous carbon nanosheets for high-performance Li-and Na-ion battery anodes[J]. ACS Applied Materials & Interfaces, 2016, 8(30): 19456-19465. |
24 | LI Y F, HU Y J, SHEN J H, et al. Rapid flame synthesis of internal Mo6+ doped TiO2 nanocrystals in situ decorated with highly dispersed MoO3 clusters for lithium ion storage[J]. Nanoscale, 2015, 7(44): 18603-18611. |
25 | HUANG J G, ICHINOSE I, KUNITAKE T, et al. Preparation of nanoporous titania films by surface sol-gel process accompanied by low-temperature oxygen plasma treatment[J]. Langmuir, 2002, 18(23): 9048-9053. |
26 | COTTE S, PELÉ V, PECQUENARD B, et al. Iron molybdate thin films prepared by sputtering and their electrochemical behavior in Li batteries[J]. Journal of Alloys and Compounds, 2018, 735: 1454-1462. |
27 | MA F X, WANG P P, XU C Y, et al. Synthesis of self-stacked CuFe2O4-Fe2O3 porous nanosheets as a high performance Li-ion battery anode[J]. Journal of Materials Chemistry A, 2014, 2(45): 19330-19337. |
28 | LI J C, FENG F, YANG S H, et al. Promising electrochemical performance of Cu3Mo2O9 nanorods for lithium-ion batteries[J]. Journal of Materials Science, 2017, 52(20): 12380-12389. |
29 | CHERIAN T C, REDDY M V, HAUR S C, et al. Interconnected network of CoMoO4 submicrometer particles as high capacity anode material for lithium ion batteries[J]. ACS Applied Materials & Interfaces, 2013, 5(3): 918-923. |
30 | ETTE P M, CHITAMBARARAJ A, PRAKASH A S. et al. MoS2 nanoflower-derived interconnected CoMoO4 nanoarchitectures as a stable and high rate performing anode for lithium-ion battery applications[J]. ACS Applied Materials & Interfaces, 2020, 12(10): 11511-11521. |
[1] | Jin WANG, Shaofei ZHANG, Jinfeng SUN, Tiantian LI. Rapid oxidation of nanoporous alloys by self-combustion and their high-efficiency energy storage performance [J]. Energy Storage Science and Technology, 2023, 12(5): 1480-1489. |
[2] | Junlong ZHOU, Lukang ZHAO, Zhaomeng LIU, Xuanwen GAO, Wenbin LUO. Advances in the research of quantum dots anode for alkali metal ion batteries [J]. Energy Storage Science and Technology, 2023, 12(5): 1392-1408. |
[3] | Feng LIU, Haizhong CHEN. Lithium-ion battery state prediction based on CEEMDAN and ISOA-ELM [J]. Energy Storage Science and Technology, 2023, 12(4): 1244-1256. |
[4] | Yuanchang DONG, Xiaoqiong PANG, Jianfang JIA, Yuanhao SHI, Jie WEN, Xiao LI, Xin ZHANG. Remaining useful life prediction of lithium-ion batteries based on SVD-SAE-GPR [J]. Energy Storage Science and Technology, 2023, 12(4): 1257-1267. |
[5] | Shugang LIU, Bo MENG, Zhenglong LI, Yaxiong YANG, Jian CHEN. Electrochemical performance of chemical prelithiated Li x (Mg, Ni, Zn, Cu, Co) 1-x O high-entropy oxide as anode material for lithium ion battery [J]. Energy Storage Science and Technology, 2023, 12(3): 743-753. |
[6] | Yuting ZHU, Gongqin YAN, Yuqian LIN. Electrochemical properties and First-principles study of MoS2/rGO composite [J]. Energy Storage Science and Technology, 2023, 12(3): 698-709. |
[7] | Xiuliang CHANG, Xichao LI, Longzhou JIA, Shouli WEI, Jinghao WANG, Zuoqiang DAI, Lili ZHENG. Heat generation characteristics of overcharged cyclic aging batteries [J]. Energy Storage Science and Technology, 2023, 12(3): 685-697. |
[8] | Yulong ZHANG, Weiling LUAN, Senming WU. Quantitative analysis of the lithium plating-stripping process of lithium-ion batteries using external characteristic methods [J]. Energy Storage Science and Technology, 2023, 12(2): 529-535. |
[9] | Ke XU, Juexi CHEN, Yao MENG, Zhiye YUAN, Xingyan WANG. Preparation of Cu-NiCoP microspheres and their supercapacitive performance [J]. Energy Storage Science and Technology, 2023, 12(2): 357-365. |
[10] | Huimin ZHANG, Jing WANG, Yibo WANG, Jiaxin ZHENG, Jingyi QIU, Gaoping CAO, Hao ZHANG. Multiscale modeling of the SEI of lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(2): 366-382. |
[11] | Qunbin ZHANG, Tao DONG, Jingjing LI, Yanxia LIU, Haitao ZHANG. Research progress on the recovery and high-value utilization of spent electrolyte from lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2798-2810. |
[12] | Shaojun NIU, Kai WU, Guobin ZHU, Yan WANG, Qunting QU, Honghe ZHENG. Studies on the swelling force during cycling of Si-based anodes in lithium ion batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2989-2994. |
[13] | Jianxiang DENG, Jinliang ZHAO, Chengde HUANG. High energy density lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(7): 2092-2102. |
[14] | Xianxi LIU, Anliang SUN, Chuan TIAN. Research on liquid cooling and heat dissipation of lithium-ion battery pack based on bionic wings vein channel cold plate [J]. Energy Storage Science and Technology, 2022, 11(7): 2266-2273. |
[15] | OU Yu, HOU Wenhui, LIU Kai. Research progress of smart safety electrolytes in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1772-1787. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||