Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (5): 1604-1615.doi: 10.19799/j.cnki.2095-4239.2023.0072
• Energy Storage Materials and Devices • Previous Articles Next Articles
Chuan HU1(), Zhiwei HU2, Zhendong LI2, Shuai LI1, Hao WANG1, Liping WANG1()
Received:
2023-02-14
Revised:
2023-03-12
Online:
2023-05-05
Published:
2023-05-29
Contact:
Liping WANG
E-mail:2130388134@qq.com;lipingwang@uestc.edu.cn
CLC Number:
Chuan HU, Zhiwei HU, Zhendong LI, Shuai LI, Hao WANG, Liping WANG. Tailoring LiPF6-base electrolyte solvation structure toward a stable Lithium-rich manganese-based cathode interface[J]. Energy Storage Science and Technology, 2023, 12(5): 1604-1615.
Fig. 1
Properties of electrolyte F-based, F-TTE and F-2TTE: Raman spectra (a) From 680 to 780 cm–1,(b) From 880 to 980 cm–1; (c) Calculated HOMO levels of solvent molecule; (d) LSV curves; (e) Contact angle between electrolytes and separate and ionic conductivity of electrolytes; (f) Rate performance"
Table 1
Electrochemical performance of lithium-manganese-rich cathode lithiummetal batteries based on different novel electrolytes"
正极材料 | 电解液 | 循环性能 |
---|---|---|
Li1.16Mn0.63Ni0.21O2 [ Li1.144Mn0.544Ni0.136Co0.136O2[ Li1.2Mn0.54Ni0.13Co0.13O2[ Li1.2Mn0.54Ni0.13Co0.13O2[ Li1.2Mn0.54Ni0.13Co0.13O2[ Li1.17Mn0.5Ni0.17Co0.17O2[ Li1.16Mn0.54Ni0.2Co0.1O2[ Li1.2Mn0.54Ni0.13Co0.13O2[ Li1.17Mn0.5Ni0.17Co0.17O2[ Li1.2Mn0.6Ni0.2O2[ Li1.2Mn0.56Ni0.16Co0.08O2[ Li1.2Mn0.54Ni0.13Co0.13O2[ Li1.2Mn0.54Ni0.13Co0.13O2[ Li1.2Mn0.55Ni0.15Co0.1O2[ Li1.2Mn0.54Ni0.13Co0.13O2(本文) | 1 mol/L LiPF6 EC/DMC/DEC+2% FEC 1 mol/L LiPF6TMP/TTE 1 mol/L LiPF6 EC/EMC/DEC+1% PVS 1 mol/L LiPF6 EC/DMC+3% TEP 1 mol/L LiPF6 EC/DEC+1% TMP 1.3 mol/L LiPF6 EC/EMC/DMC+0.5% TMSP 1 mol/L LiPF6 EC/EMC+0.2% TPPi 1 mol/L LiPF6 EC/EMC/DMC+0.5% TMSPi 1 mol/L LiPF6 EC/EMC/DMC+1% LiDFOB 1.2 mol/L LiPF6 EC/EMC+2% LiBOB 1 mol/L LiPF6 EC/DMC+0.5% TMSB 1 mol/L LiPF6 EC/EMC/DEC+2% TMB 1 mol/L LiPF6 EC/EMC/DEC+3% TPB 1 mol/L LiPF6 EC/EMC/DEC+1% BTMSC 1 mol/L LiPF6 FEC/DMC/TTE+1% LiDFOB | 0.5 C-100 cycles@92% 0.03 C-100 cycles@96% 0.5 C-240 cycles@80% 0.3 C-110 cycles@82% 0.5 C-100 cycles@81% 0.5 C-100 cycles@77% 0.5 C-90 cycles@91% 0.5 C-300 cycles@74% 0.5 C-200 cycles@81% 0.2 C-300 cycles@92% 0.5 C-200 cycles@74% 0.5 C-300 cycles@84% 0.5 C-250 cycles@78% 0.5 C-200 cycles@72% 0.5 C-400 cycles@83% |
Table 2
Pouch Cell characteristic parameters"
组成 | 特征/单位 | 参数 |
---|---|---|
正极 | 正极材料 | Li1.2Mn0.54Ni0.13Co0.13O2 |
放电比容量/(mAh/g) | 300 | |
双面涂布厚度/(Al箔6 μm)(μm) | 200 | |
尺寸/mm3 | 65.0×45.0×0.2 | |
面载量/(mAh/cm2) | 4.0 | |
正极片层数 | 5 | |
负极 | 负极材料 | 金属锂 |
厚度/μm | 120 | |
负极片层数 | 6 | |
隔膜 电解液 | 20 μm PP隔膜 | |
1 mol/L LiPF6FEC/DMC/TTE+1% LiDFOB | ||
电解液用量/g | 3.0 | |
电池 | 尺寸/mm3 | 85.0×50.0×2.4 |
质量/g | 11.7 | |
N/P | 3.0 | |
容量/Ah | 1.25 | |
充放电电压区间/V | 2.0~4.8 | |
能量密度/(Wh/kg) | 370 |
1 | WU F X, MAIER J, YU Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries[J]. Chemical Society Reviews, 2020, 49(5): 1569-1614. |
2 | LU Z H, MACNEIL D D, DAHN J R. Layered cathode materials Li[NixLi(1/3–2 x/3)Mn(2/3– x/3)]O2 for lithium-ion batteries[J]. Electrochemical and Solid-State Letters, 2001, 4(11): A191. |
3 | CHA J, HAN J G, HWANG J, et al. Mechanisms for electrochemical performance enhancement by the salt-type electrolyte additive, lithium difluoro(oxalato)borate, in high-voltage lithium-ion batteries[J]. Journal of Power Sources, 2017, 357: 97-106. |
4 | FAN X L, WANG C S. High-voltage liquid electrolytes for Li batteries: Progress and perspectives[J]. Chemical Society Reviews, 2021, 50(18): 10486-10566. |
5 | ZHANG B D, WANG L L, WANG X T, et al. Sustained releasing superoxo scavenger for tailoring the electrode-electrolyte interface on Li-rich cathode[J]. Energy Storage Materials, 2022, 53: 492-504. |
6 | LI Y X, LI W K, SHIMIZU R, et al. Elucidating the effect of borate additive in high-voltage electrolyte for Li-rich layered oxide materials[J]. Advanced Energy Materials, 2022, 12(11): 2103033. |
7 | ZHENG X W, WANG X S, CAI X, et al. Constructing a protective interface film on layered lithium-rich cathode using an electrolyte additive with special molecule structure[J]. ACS Applied Materials & Interfaces, 2016, 8(44): 30116-30125. |
8 | WANG H P, LI X, LI F, et al. Formation and modification of cathode electrolyte interphase: A mini review[J]. Electrochemistry Communications, 2021, 122: 106870. |
9 | KÖPS L, KRETH F A, LEISTENSCHNEIDER D, et al. Improving the stability of supercapacitors at high voltages and high temperatures by the implementation of ethyl isopropyl sulfone as electrolyte solvent[J]. Advanced Energy Materials, 2023, 13(5): 2203821. |
10 | GMITTER A J, PLITZ I, AMATUCCI G G. High concentration dinitrile, 3-alkoxypropionitrile, and linear carbonate electrolytes enabled by vinylene and monofluoroethylene carbonate additives[J]. Journal of the Electrochemical Society, 2012, 159(4): A370-A379. |
11 | ABU-LEBDEH Y, DAVIDSON I. New electrolytes based on glutaronitrile for high energy/power Li-ion batteries[J]. Journal of Power Sources, 2009, 189(1): 576-579. |
12 | CUI C Y, FAN X L, ZHOU X Q, et al. Structure and interface design enable stable Li-rich cathode[J]. Journal of the American Chemical Society, 2020, 142(19): 8918-8927. |
13 | FAN X L, CHEN L, BORODIN O, et al. Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries[J]. Nature Nanotechnology, 2018, 13(8): 715-722. |
14 | 毛舒岚, 武倩, 王卓雅, 等. 三元NCM锂离子电池高电压电解质的研究进展[J]. 储能科学与技术, 2020, 9(2): 538-550. |
MAO S L, WU Q, WANG Z Y, et al. Research progress of high voltage electrolyte for ternary NCM lithium ion battery[J]. Energy Storage Science and Technology, 2020, 9(2): 538-550. | |
15 | WU Z C, LI R H, ZHANG S Q, et al. Deciphering and modulating energetics of solvation structure enables aggressive high-voltage chemistry of Li metal batteries[J]. Chem, 2023, 9(3): 650-664. |
16 | ZHANG Y R, KATAYAMA Y, TATARA R, et al. Revealing electrolyte oxidation via carbonate dehydrogenation on Ni-based oxides in Li-ion batteries by in situ Fourier transform infrared spectroscopy[J]. Energy & Environmental Science, 2020, 13(1): 183-199. |
17 | ZHENG J M, LOCHALA J A, KWOK A, et al. Research progress towards understanding the unique interfaces between concentrated electrolytes and electrodes for energy storage applications[J]. Advanced Science, 2017, 4(8): 1700032. |
18 | CAO Z Y, HASHINOKUCHI M, DOI T, et al. Improved cycle performance of LiNi0.8Co0.1Mn0.1O2 positive electrode material in highly concentrated LiBF4/DMC[J]. Journal of the Electrochemical Society, 2019, 166(2): A82-A88. |
19 | DOI T, MASUHARA R, HASHINOKUCHI M, et al. Concentrated LiPF6/PC electrolyte solutions for 5-V LiNi0.5Mn1.5O4 positive electrode in lithium-ion batteries[J]. Electrochimica Acta, 2016, 209: 219-224. |
20 | REN X D, CHEN S R, LEE H, et al. Localized high-concentration sulfone electrolytes for high-efficiency lithium-metal batteries[J]. Chem, 2018, 4(8): 1877-1892. |
21 | MING J, CAO Z, LI Q, et al. Molecular-scale interfacial model for predicting electrode performance in rechargeable batteries[J]. ACS Energy Letters, 2019, 4(7): 1584-1593. |
22 | REN F H, LI Z D, CHEN J H, et al. Solvent-diluent interaction-mediated solvation structure of localized high-concentration electrolytes[J]. ACS Applied Materials & Interfaces, 2022, 14(3): 4211-4219. |
23 | WANG X S, WANG S W, WANG H R, et al. Hybrid electrolyte with dual-anion-aggregated solvation sheath for stabilizing high-voltage lithium-metal batteries[J]. Advanced Materials (Deerfield Beach, Fla), 2021, 33(52): e2007945. |
24 | ZHAO J T, ZHANG X, LIANG Y, et al. Interphase engineering by electrolyte additives for lithium-rich layered oxides: Advances and perspectives[J]. ACS Energy Letters, 2021, 6(7): 2552-2564. |
25 | CHEN L, NIAN Q S, RUAN D G, et al. High-safety and high-efficiency electrolyte design for 4.6 V-class lithium-ion batteries with a non-solvating flame-retardant[J]. Chemical Science, 2022, 14(5): 1184-1193. |
26 | 詹元杰, 武怿达, 马晓威, 等. 基于碳酸酯基电解液的4.5V电池[J]. 储能科学与技术, 2020, 9(2): 319-330. |
ZHAN Y J, WU Y D, MA X W, et al. 4.5 V Li-ion battery with a carbonate ester-based electrolyte[J]. Energy Storage Science and Technology, 2020, 9(2): 319-330. | |
27 | LI Y, LIAN F, MA L L, et al. Fluoroethylene carbonate as electrolyte additive for improving the electrochemical performances of high-capacity Li1.16[Mn0.75Ni0.25]0.84O2 material[J]. Electrochimica Acta, 2015, 168: 261-270. |
28 | LIU Z Z, LIU Z S, LI K H, et al. Exploring trimethyl-phosphate-based electrolytes without a carbonyl group for Li-rich layered oxide positive electrodes in lithium-ion batteries[J]. The Journal of Physical Chemistry Letters, 2022, 13(48): 11307-11316. |
29 | ZHU Y M, LUO X Y, XU M Q, et al. Failure mechanism of layered lithium-rich oxide/graphite cell and its solution by using electrolyte additive[J]. Journal of Power Sources, 2016, 317: 65-73. |
30 | LI L S, WANG D M, XU G J, et al. Recent progress on electrolyte functional additives for protection of nickel-rich layered oxide cathode materials[J]. Journal of Energy Chemistry, 2022, 65: 280-292. |
31 | TU W Q, XIA P, ZHENG X W, et al. Insight into the interaction between layered lithium-rich oxide and additive-containing electrolyte[J]. Journal of Power Sources, 2017, 341: 348-356. |
32 | LI Z D, ZHANG Y C, XIANG H F, et al. Trimethyl phosphite as an electrolyte additive for high-voltage lithium-ion batteries using lithium-rich layered oxide cathode[J]. Journal of Power Sources, 2013, 240: 471-475. |
33 | HAN J G, LEE S J, LEE J, et al. Tunable and robust phosphite-derived surface film to protect lithium-rich cathodes in lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2015, 7(15): 8319-8329. |
34 | ZHOU Z X, MA Y L, WANG L, et al. Triphenyl phosphite as an electrolyte additive to improve the cyclic stability of lithium-rich layered oxide cathode for lithium-ion batteries[J]. Electrochimica Acta, 2016, 216: 44-50. |
35 | LI J H, XING L D, ZHANG R Q, et al. Tris(trimethylsilyl)borate as an electrolyte additive for improving interfacial stability of high voltage layered lithium-rich oxide cathode/carbonate-based electrolyte[J]. Journal of Power Sources, 2015, 285: 360-366. |
36 | LI J H, XING L D, CHEN J W, et al. Improving high voltage interfacial and structural stability of layered lithium-rich oxide cathode by using a boracic electrolyte additive[J]. Journal of the Electrochemical Society, 2016, 163(10): A2258-A2264. |
37 | LI J H, XING L D, WANG Z S, et al. Insight into the capacity fading of layered lithium-rich oxides and its suppression via a film-forming electrolyte additive[J]. RSC Advances, 2018, 8(45): 25794-25801. |
38 | LAN J L, ZHENG Q F, ZHOU H B, et al. Stabilizing a high-voltage lithium-rich layered oxide cathode with a novel electrolyte additive[J]. ACS Applied Materials & Interfaces, 2019, 11(32): 28841-28850. |
39 | LIN S S, ZHAO J B. Functional electrolyte of fluorinated ether and ester for stabilizing both 4.5 V LiCoO2 cathode and lithium metal anode[J]. ACS Applied Materials & Interfaces, 2020, 12(7): 8316-8323. |
40 | WANG Y, ZHANG Y J, WANG S, et al. Ultrafast charging and stable cycling dual‐ion batteries enabled via an artificial cathode-electrolyte interface[J]. Advanced Functional Materials, 2021, 31(29): doi: 10.1002/adfm 202102360. |
41 | 张建宇, 鲁理平, 于志辉, 宋进, 夏定国. P2-O3复合相富锂锰基正极材料的合成及性能研究[J]. 储能科学与技术, 2020, 9(2): 346-352. |
ZHANG Jianyu, LU Liping, YU Zhihui, SONG Jin, XIA Dingguo. Synthesis and performance of P2-O3 composite-phase Li-rich Mn-based cathode materials[J]. Energy Storage Science and Technology, 2020, 9(2): 346-352. | |
42 | TAN J, MATZ J, DONG P, et al. A growing appreciation for the role of LiF in the solid electrolyte interphase[J]. Advanced Energy Materials, 2021, 11(16): doi: 10.1002/aenm.2100046. |
43 | SVEN K, STEFAN V W, STEPHAN R, et al. Understanding the outstanding high-voltage performance of NCM523||Graphite lithium ion cells after elimination of ethylene carbonate solvent from conventional electrolyte[J]. Advanced Energy Materials, 2021, 11(14): doi: 10.1002/aenm.202003738. |
44 | ZHOU M M, ZHAO J J, WANG X D, et al. Surface engineering for high stable lithium-rich Manganese-based cathode materials[J]. Chinese Chemical Letters, 2022: 107793. |
45 | ZHENG H F, ZHANG C Y, ZHANG Y G, et al. Manipulating the local electronic structure in Li-rich layered cathode towards superior electrochemical performance[J]. Advanced Functional Materials, 2021, 31(30): doi: 10.1002/adfm.2100783. |
46 | KAEWMALA S, LIMPHIRAT W, YORDSRI V, et al. Structural and electrochemical kinetic properties of 0.5Li2MnO3∙0.5LiCoO2 cathode materials with different Li2MnO3 domain sizes[J]. Scientific Reports, 2019, 9(1): 1-12. |
47 | LI Z, CAO S, XIE X, et al. Boosting electrochemical performance of lithium-rich Manganese-based cathode materials through a dual modification strategy with defect designing and interface engineering[J]. ACS Applied Materials & Interfaces, 2021, 13(45): 53974-53985. |
48 | SHI S J, ZHANG S S, WU Z J, et al. Full microwave synthesis of advanced Li-rich Manganese based cathode material for lithium ion batteries[J]. Journal of Power Sources, 2017, 337: 82-91. |
49 | XIAO L F, YANG Y Y, ZHAO Y Q, et al. Synthesis and electrochemical properties of submicron LiNi0.8Co0.2O2 by a polymer-pyrolysis method[J]. Electrochimica Acta, 2008, 53(6): 3007-3012. |
50 | ZHAO W G, ZHENG J M, ZOU L F, et al. High voltage operation of Ni-rich NMC cathodes enabled by stable electrode/electrolyte interphases[J]. Advanced Energy Materials, 2018, 8(19): 1800297. |
[1] | Zhizhan LI, Jinlei QIN, Jianing LIANG, Zhengrong LI, Rui WANG, Deli WANG. High-nickel ternary layered cathode materials for lithium-ion batteries: Research progress, challenges and improvement strategies [J]. Energy Storage Science and Technology, 2022, 11(9): 2900-2920. |
[2] | Tao YIN, Longzhou JIA, Xiuliang CHANG, Zuoqiang DAI, Lili ZHENG. Research on thermal safety of soft-pack LiFePO4 battery after high-voltage float charge [J]. Energy Storage Science and Technology, 2022, 11(8): 2546-2555. |
[3] | WU Yida, ZHANG Yi, ZHAN Yuanjie, GUO Yaqi, ZHANG liao, LIU Xingjiang, YU Hailong, ZHAO Wenwu, HUANG Xuejie. The effect of B2O3 modification on the electrochemical properties of LiCoO2 cathode [J]. Energy Storage Science and Technology, 2022, 11(6): 1687-1692. |
[4] | Haiyan HU, Shulei CHOU, Yao XIAO. Layered oxide cathode materials based on molecular orbital hybridization for high voltage sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1093-1102. |
[5] | Weicheng SHEN, Wenxi ZHEN, Chong SHAO, Qi XIE. Coordinated fault ride through strategy for doubly fed induction generator using a superconducting magnetic energy storage system [J]. Energy Storage Science and Technology, 2022, 11(1): 136-146. |
[6] | Yanfeng TIAN, Xinxin ZHAO, Qitong FU, Zhe WANG, Xuzhang ZHAO. Structure analysis of high temperature heat storage conductor based on thermal-electricity-magnetic field coupling [J]. Energy Storage Science and Technology, 2021, 10(3): 1051-1059. |
[7] | KONG Lingli, ZHANG Kejun, CAI Jiaxing, LI Fuxuan. Analysis and improvement of interval cycle life for high voltage lithium ion batteries [J]. Energy Storage Science and Technology, 2020, 9(3): 964-968. |
[8] | MAO Shulan, WU Qian, WANG Zhuoya, LU Yingying. Research progress on high-voltage electrolytes for ternary NCM lithium-ion batteries [J]. Energy Storage Science and Technology, 2020, 9(2): 538-550. |
[9] | KONG Lily, ZHANG Kejun, XIA Xiaomeng, CAI Jiaxing, SUN Jie, YANG Yuqiu. Analysis and improvement of high temperature floating charge performance for high voltage lithium ion batteries [J]. Energy Storage Science and Technology, 2019, 8(6): 1165-1170. |
[10] | MA Yanmei. Recent research progress of metal sulfides as anode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2019, 8(3): 488-494. |
[11] | GUO Shen, WANG Peng, ZHANG Jichuan, LUAN Wenpeng, YU Jie, HE Zhizhu. An overview of electromagnetic energy collection and storage technologies for a high voltage transmission system [J]. Energy Storage Science and Technology, 2019, 8(1): 32-46. |
[12] | LI Fangfang, CHEN Shimou. Research progress on electrolyte additives for high voltage lithium-ion batteries [J]. Energy Storage Science and Technology, 2016, 5(4): 436-442. |
[13] | XIE Jia, PENG Wen, YANG Xulai. The cycle life investigation for spinel LiNi0.5Mn1.5O4 full cells [J]. Energy Storage Science and Technology, 2014, 3(6): 624-628. |
[14] | LIU Yali, WU Jiaoyang, LI Hong. Fundamental scientific aspects of lithium ion batteries (Ⅸ)----Nonaqueous electrolyte materials [J]. Energy Storage Science and Technology, 2014, 3(3): 262-282. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||