Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (5): 1380-1391.doi: 10.19799/j.cnki.2095-4239.2023.0324
• Special Issue on Key Materials and Recycling Technologies for Energy Storage Batteries • Previous Articles Next Articles
Yongshi YU1(), Xianming XIA1, Hongyang HUANG1, Yu YAO2, Xianhong RUI1, Guobin ZHONG3, Wei SU3(), Yan YU2()
Received:
2023-05-06
Revised:
2023-05-15
Online:
2023-05-05
Published:
2023-05-29
Contact:
Wei SU, Yan YU
E-mail:2112102083@mail2.gdut.edu.cn;jxhwsu@163.com;yanyumse@ustc.edu.cn
CLC Number:
Yongshi YU, Xianming XIA, Hongyang HUANG, Yu YAO, Xianhong RUI, Guobin ZHONG, Wei SU, Yan YU. Research progress on sodium metal anode modified by artificial interface layer[J]. Energy Storage Science and Technology, 2023, 12(5): 1380-1391.
Fig. 5
(a) Schematic diagram of NaF artificial interface layer stabilized Na metal anode[81]; (b) Schematic diagram of NaI unit cell structure and the transport path of Na atoms on the NaI surface[82]; (c) Schematic diagram of the diffusion energy barriers of Mg, Na and Li atoms on the surface of the above chemical components[46]"
1 | ZHANG B, KANG F Y, TARASCON J M, et al. Recent advances in electrospun carbon nanofibers and their application in electrochemical energy storage[J]. Progress in Materials Science, 2016, 76: 319-380. |
2 | CHEN C J, ZHANG Y, LI Y J, et al. Highly conductive, lightweight, low-tortuosity carbon frameworks as ultrathick 3D current collectors[J]. Advanced Energy Materials, 2017, 7(17): doi:10.1002/aenm. 201700595. |
3 | YANG Z G, ZHANG J L, KINTNER-MEYER M C W, et al. Electrochemical energy storage for green grid[J]. Chemical Reviews, 2011, 111(5): 3577-3613. |
4 | 张平, 康利斌, 王明菊, 等. 钠离子电池储能技术及经济性分析[J]. 储能科学与技术, 2022, 11(6): 1892-1901. |
ZHANG P, KANG L B, WANG M J, et al. Technology feasibility and economic analysis of Na-ion battery energy storage[J]. Energy Storage Science and Technology, 2022, 11(6): 1892-1901. | |
5 | 王心怡, 李维杰, 韩朝, 等. 水系锌离子电池金属负极的挑战与优化策略[J]. 储能科学与技术, 2022, 11(4): 1211-1225. |
WANG X Y, LI W J, HAN (C /Z), et al. Challenges and optimization strategies of the anode of aqueous zinc-ion battery[J]. Energy Storage Science and Technology, 2022, 11(4): 1211-1225. | |
6 | DUNN B, KAMATH H, TARASCON J M. Electrical energy storage for the grid: A battery of choices[J]. Science, 2011, 334(6058): 928-935. |
7 | PAN H L, HU Y S, CHEN L Q. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage[J]. Energy & Environmental Science, 2013, 6(8): 2338-2360. |
8 | LARCHER D, TARASCON J M. Towards greener and more sustainable batteries for electrical energy storage[J]. Nature Chemistry, 2015, 7(1): 19-29. |
9 | YOSHINO A. The birth of the lithium-ion battery[J]. Angewandte Chemie International Edition, 2012, 51(24): 5798-5800. |
10 | HU L, DENG J J, LIANG Q H, et al. Engineering current collectors for advanced alkali metal anodes: A review and perspective[J]. EcoMat, 2023, 5(1): e12269. |
11 | ARMAND M, TARASCON J M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657. |
12 | CUI J Y, WANG A X, LI G J, et al. Composite sodium metal anodes for practical applications[J]. Journal of Materials Chemistry A, 2020, 8(31): 15399-15416. |
13 | PERVEEN T, SIDDIQ M, SHAHZAD N, et al. Prospects in anode materials for sodium ion batteries-A review[J]. Renewable and Sustainable Energy Reviews, 2020, 119: doi:10.1016/j.rser.2019. 109549. |
14 | HWANG J Y, MYUNG S T, SUN Y K. Sodium-ion batteries: Present and future[J]. Chemical Society Reviews, 2017, 46(12): 3529-3614. |
15 | CHAYAMBUKA K, MULDER G, DANILOV D L, et al. From Li-ion batteries toward Na-ion chemistries: Challenges and opportunities[J]. Advanced Energy Materials, 2020, 10(38): doi: 10.1002/aenm. 202001310. |
16 | KIM Y J, LEE H, NOH H, et al. Enhancing the cycling stability of sodium metal electrodes by building an inorganic-organic composite protective layer[J]. ACS Applied Materials & Interfaces, 2017, 9(7): 6000-6006. |
17 | SEH Z W, SUN J, SUN Y M, et al. A highly reversible room-temperature sodium metal anode[J]. ACS Central Science, 2015, 1(8): 449-455. |
18 | WEI S Y, CHOUDHURY S, XU J, et al. Highly stable sodium batteries enabled by functional ionic polymer membranes[J]. Advanced Materials, 2017, 29(12): 1605512. |
19 | WU J X, LIN C, LIANG Q H, et al. Sodium-rich NASICON-structured cathodes for boosting the energy density and lifespan of sodium-free-anode sodium metal batteries[J]. InfoMat, 2022, 4(4): doi:10.1002/inf2.12288. |
20 | LI D C, WANG X X, GUO Q, et al. Atomically bonding Na anodes with metallized ceramic electrolytes by ultrasound welding for high-energy/power solid-state sodium metal batteries[J]. Carbon Energy, 2023, 5(2): doi: 10.1002/cey2.299. |
21 | WANG H, LIANG J L, WU Y, et al. Porous BN nanofibers enable long-cycling life sodium metal batteries[J]. Small, 2020, 16(34): 2002671. |
22 | SONG H W, SU J, WANG C X. Hybrid solid electrolyte interphases enabled ultralong life Ca-metal batteries working at room temperature[J]. Advanced Materials, 2021, 33(2): 2006141. |
23 | SUN B, LI P, ZHANG J Q, et al. Dendrite-free sodium-metal anodes for high-energy sodium-metal batteries[J]. Advanced Materials, 2018, 30(29): 1801334. |
24 | TIAN H Z, SEH Z W, YAN K, et al. Theoretical investigation of 2D layered materials as protective films for lithium and sodium metal anodes[J]. Advanced Energy Materials, 2017, 7(13): 1602528. |
25 | LUO W, HU L B. Na metal anode: “holy grail” for room-temperature Na-ion batteries?[J]. ACS Central Science, 2015, 1(8): 420-422. |
26 | WANG T S, LIU Y C, LU Y X, et al. Dendrite-free Na metal plating/stripping onto 3D porous Cu hosts[J]. Energy Storage Materials, 2018, 15: 274-281. |
27 | ZHANG Q, HU M, HE J, et al. A thermodynamically stable quasi-liquid interface for dendrite-free sodium metal anodes[J]. Journal of Materials Chemistry A, 2020, 8(14): 6822-6827. |
28 | MA C Y, XU T T, WANG Y. Advanced carbon nanostructures for future high performance sodium metal anodes[J]. Energy Storage Materials, 2020, 25: 811-826. |
29 | LIN Z H, XIA Q B, WANG W L, et al. Recent research progresses in ether- and ester-based electrolytes for sodium-ion batteries[J]. InfoMat, 2019, 1(3): 376-389. |
30 | FAN L L, LI X F. Recent advances in effective protection of sodium metal anode[J]. Nano Energy, 2018, 53: 630-642. |
31 | ZHAO Y, ADAIR K R, SUN X L. Recent developments and insights into the understanding of Na metal anodes for Na-metal batteries[J]. Energy & Environmental Science, 2018, 11(10): 2673-2695. |
32 | BAO C Y, WANG B, LIU P, et al. Solid electrolyte interphases on sodium metal anodes[J]. Advanced Functional Materials, 2020, 30(52): doi:10.1002/adfm.202004891. |
33 | ZHENG J M, CHEN S R, ZHAO W G, et al. Extremely stable sodium metal batteries enabled by localized high-concentration electrolytes[J]. ACS Energy Letters, 2018, 3(2): 315-321. |
34 | WANG H, MATIOS E, LUO J M, et al. Combining theories and experiments to understand the sodium nucleation behavior towards safe sodium metal batteries[J]. Chemical Society Reviews, 2020, 49(12): 3783-3805. |
35 | YE S F, WANG L F, LIU F F, et al. Integration of homogeneous and heterogeneous nucleation growth via 3D alloy framework for stable Na/K metal anode[J]. eScience, 2021, 1(1): 75-82. |
36 | LI N W, YIN Y X, YANG C P, et al. An artificial solid electrolyte interphase layer for stable lithium metal anodes[J]. Advanced Materials, 2016, 28(9): 1853-1858. |
37 | LUO W, LIN C F, ZHAO O, et al. Ultrathin surface coating enables the stable sodium metal anode[J]. Advanced Energy Materials, 2017, 7(2): doi: 10.1002/aenm.201601526. |
38 | YUI Y, HAYASHI M, NAKAMURA J. In situ microscopic observation of sodium deposition/dissolution on sodium electrode[J]. Scientific Reports, 2016, 6(1): 1-8. |
39 | CAO K S, ZHAO X T, CHEN J, et al. Hybrid design of bulk-Na metal anode to minimize cycle-induced interface deterioration of solid Na metal battery[J]. Advanced Energy Materials, 2022, 12(7): doi:10.1002/aenm.202102579. |
40 | WANG H, WU Y, LIU S H, et al. 3D Ag@C cloth for stable anode free sodium metal batteries[J]. Small Methods, 2021, 5(4): doi:10.1002/smtd.202001050. |
41 | TANG F, XIA R Q, CHEN D, et al. Rapid and reversible Na deposition onto Al nanosheet arrays[J]. Journal of Energy Chemistry, 2022, 74: 1-7. |
42 | CHENG H R, SUN Q J, LI L L, et al. Emerging era of electrolyte solvation structure and interfacial model in batteries[J]. ACS Energy Letters, 2022, 7(1): 490-513. |
43 | YU Z A, RUDNICKI P E, ZHANG Z W, et al. Rational solvent molecule tuning for high-performance lithium metal battery electrolytes[J]. Nature Energy, 2022, 7(1): 94-106. |
44 | ZHAO Q, STALIN S, ARCHER L A. Stabilizing metal battery anodes through the design of solid electrolyte interphases[J]. Joule, 2021, 5(5): 1119-1142. |
45 | WEI C L, TAN L W, ZHANG Y C, et al. Review of room-temperature liquid metals for advanced metal anodes in rechargeable batteries[J]. Energy Storage Materials, 2022, 50: 473-494. |
46 | CHOUDHURY S, WEI S Y, OZHABES Y, et al. Designing solid-liquid interphases for sodium batteries[J]. Nature Communications, 2017, 8(1): 1-10. |
47 | YANG H, HE F X, LI M H, et al. Design principles of sodium/potassium protection layer for high-power high-energy sodium/potassium-metal batteries in carbonate electrolytes: A case study of Na2Te/K2Te[J]. Advanced Materials, 2021, 33(48): doi:10.1002/adma.202106353. |
48 | LI D J, SUN Y J, LI M H, et al. Rational design of an artificial SEI: Alloy/solid electrolyte hybrid layer for a highly reversible Na and K metal anode[J]. ACS Nano, 2022, 16(10): 16966-16975. |
49 | LU Q Q, OMAR A, DING L, et al. A facile method to stabilize sodium metal anodes towards high-performance sodium batteries[J]. Journal of Materials Chemistry A, 2021, 9(14): 9038-9047. |
50 | ZHU M, WANG G Y, LIU X, et al. Dendrite-free sodium metal anodes enabled by a sodium benzenedithiolate-rich protection layer[J]. Angewandte Chemie International Edition, 2020, 59(16): 6596-6600. |
51 | SONI C B, SUNGJEMMENLA, VINEETH S K, et al. Patterned interlayer enables a highly stable and reversible sodium metal anode for sodium-metal batteries[J]. Sustainable Energy & Fuels, 2023, 7(8): 1908-1915. |
52 | CHEN Q W, HOU Z, SUN Z Z, et al. Polymer-inorganic composite protective layer for stable Na metal anodes[J]. ACS Applied Energy Materials, 2020, 3(3): 2900-2906. |
53 | PELED E. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—The solid electrolyte interphase model[J]. Journal of the Electrochemical Society, 1979, 126(12): 2047-2051. |
54 | PELED E. Film forming reaction at the lithium/electrolyte interface[J]. Journal of Power Sources, 1983, 9(3): 253-266. |
55 | PELED E, GOLODNITSKY D, ARDEL G. Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes[J]. Journal of the Electrochemical Society, 1997, 144(8): L208-L210. |
56 | AURBACH D, MARKOVSKY B, LEVI M D, et al. New insights into the interactions between electrode materials and electrolyte solutions for advanced nonaqueous batteries[J]. Journal of Power Sources, 1999, 81: 95-111. |
57 | SHI S Q, LU P, LIU Z Y, et al. Direct calculation of Li-ion transport in the solid electrolyte interphase[J]. Journal of the American Chemical Society, 2012, 134(37): 15476-15487. |
58 | GOODENOUGH J B, KIM Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials, 2010, 22(3): 587-603. |
59 | WU B B, WANG S Y, LOCHALA J, et al. The role of the solid electrolyte interphase layer in preventing Li dendrite growth in solid-state batteries[J]. Energy & Environmental Science, 2018, 11(7): 1803-1810. |
60 | WANG T, HUA Y B, XU Z W, et al. Recent advanced development of artificial interphase engineering for stable sodium metal anodes[J]. Small, 2022, 18(5): doi: 10.1002/smll. 2102250. |
61 | MA L B, CUI J, YAO S S, et al. Dendrite-free lithium metal and sodium metal batteries[J]. Energy Storage Materials, 2020, 27: 522-554. |
62 | CHENG X B, ZHANG R, ZHAO C Z, et al. Toward safe lithium metal anode in rechargeable batteries: A review[J]. Chemical Reviews, 2017, 117(15): 10403-10473. |
63 | WANG T, HUA Y B, XU Z W, et al. Recent advanced development of artificial interphase engineering for stable sodium metal anodes[J]. Small, 2022, 18(5): doi:10.1002/smll.202102250. |
64 | AKOLKAR R. Modeling dendrite growth during lithium electrodeposition atsub-ambient temperature[J]. Journal of Power Sources, 2014, 246: 84-89. |
65 | MEDENBACH L, BENDER C L, HAAS R, et al. Origins of dendrite formation in sodium-oxygen batteries and possible countermeasures[J]. Energy Technology, 2017, 5(12): 2265-2274. |
66 | LIN D C, LIU Y Y, CUI Y. Reviving the lithium metal anode for high-energy batteries[J]. Nature Nanotechnology, 2017, 12(3): 194-206. |
67 | SUN B, XIONG P, MAITRA U, et al. Design strategies to enable the efficient use of sodium metal anodes in high-energy batteries[J]. Advanced Materials, 2020, 32(18): doi:10.1002/adma.201903891. |
68 | ZHENG X Y, BOMMIER C, LUO W, et al. Sodium metal anodes for room-temperature sodium-ion batteries: Applications, challenges and solutions[J]. Energy Storage Materials, 2019, 16: 6-23. |
69 | XU R, CHENG X B, YAN C, et al. Artificial interphases for highly stable lithium metal anode[J]. Matter, 2019, 1(2): 317-344. |
70 | LI B, ZHANG X T, WANG T T, et al. Interfacial engineering strategy for high-performance Zn metal anodes[J]. Nano-Micro Letters, 2021, 14(1): 1-31. |
71 | MEYERSON M L, PAPA P E, HELLER A, et al. Recent developments in dendrite-free lithium-metal deposition through tailoring of micro- and nanoscale artificial coatings[J]. ACS Nano, 2021, 15(1): 29-46. |
72 | MENG X B, YANG X Q, SUN X L. Emerging applications of atomic layer deposition for lithium-ion battery studies[J]. Advanced Materials, 2012, 24(27): 3589-3615. |
73 | ZHAO Y, GONCHAROVA L V, LUSHINGTON A, et al. Superior stable and long life sodium metal anodes achieved by atomic layer deposition[J]. Advanced Materials, 2017, 29(18): doi:10.1002/adma.201606663. |
74 | IERMAKOVA D I, DUGAS R, PALACÍN M R, et al. On the comparative stability of Li and Na metal anode interfaces in conventional alkyl carbonate electrolytes[J]. Journal of the Electrochemical Society, 2015, 162(13): A7060-A7066. |
75 | HOU Z, WANG W H, CHEN Q W, et al. Hybrid protective layer for stable sodium metal anodes at high utilization[J]. ACS Applied Materials & Interfaces, 2019, 11(41): 37693-37700. |
76 | XIE Y Y, LIU C Y, ZHENG J Q, et al. NaF-rich protective layer on PTFE coating microcrystalline graphite for highly stable Na metal anodes[J].Nano Research, 2023, 16(2): 2436-2444. |
77 | WANG H P, ZHU C L, LIU J D, et al. Formation of NaF-rich solid electrolyte interphase on Na anode through additive-induced anion-enriched structure of Na+ solvation[J]. Angewandte Chemie International Edition, 2022, 61(38): doi: 10.1002/anie.202208506. |
78 | DUGAS R, PONROUCH A, GACHOT G, et al. Na reactivity toward carbonate-based electrolytes: The effect of FEC as additive[J]. Journal of the Electrochemical Society, 2016, 163(10): A2333-A2339. |
79 | WU S C, QIAO Y, JIANG K Z, et al. Tailoring sodium anodes for stable sodium-oxygen batteries[J]. Advanced Functional Materials, 2018, 28(13): doi: 10.1002/adfm.201706374. |
80 | XU Z X, YANG J, ZHANG T, et al. Stable Na metal anode enabled by a reinforced multistructural SEI layer[J]. Advanced Functional Materials, 2019: doi: 10.1002/adfm.201901924. |
81 | CHENG Y F, YANG X M, LI M H, et al. Enabling ultrastable alkali metal anodes by artificial solid electrolyte interphase fluorination[J]. Nano Letters, 2022, 22(11): 4347-4353. |
82 | TIAN H J, SHAO H Z, CHEN Y, et al. Ultra-stable sodium metal-iodine batteries enabled by an in situ solid electrolyte interphase[J]. Nano Energy, 2019, 57: 692-702. |
83 | SHI P C, ZHANG S P, LU G X, et al. Red phosphorous-derived protective layers with high ionic conductivity and mechanical strength on dendrite-free sodium and potassium metal anodes[J]. Advanced Energy Materials, 2021, 11(5): doi:10.1002/aenm. 202003381. |
84 | ZHENG X Y, GU Z Y, FU J, et al. Knocking down the kinetic barriers towards fast-charging and low-temperature sodium metal batteries[J]. Energy & Environmental Science, 2021, 14(9): 4936-4947. |
85 | LUO Z, TAO S S, TIAN Y, et al. Robust artificial interlayer for columnar sodium metal anode[J]. Nano Energy, 2022, 97: https://doi.org/10.1016/j.nanoen.2022.107203. |
86 | WANG S J, YANG Z, CHEN B T, et al. A highly reversible, dendrite-free zinc metal anodes enabled by a dual-layered interface[J]. Energy Storage Materials, 2022, 47: 491-499. |
87 | SUN Y P, ZHAO Y, WANG J W, et al. A novel organic “polyurea” thin film for ultralong-life lithium-metal anodes via molecular-layer deposition[J]. Advanced Materials, 2019, 31(4): doi:10.1002/adma. 201806541. |
88 | LIANG Z, ZHENG G Y, LIU C, et al. Polymer nanofiber-guided uniform lithium deposition for battery electrodes[J]. Nano Letters, 2015, 15(5): 2910-2916. |
89 | GREGORCZYK K, KNEZ M. Hybrid nanomaterials through molecular and atomic layer deposition: Top down, bottom up, and in-between approaches to new materials[J]. Progress in Materials Science, 2016, 75: 1-37. |
90 | ZHAO Y, SUN X L. Molecular layer deposition for energy conversion and storage[J]. ACS Energy Letters, 2018, 3(4): 899-914. |
91 | ZHAO Y, GONCHAROVA L V, ZHANG Q, et al. Inorganic-organic coating via molecular layer deposition enables long life sodium metal anode[J]. Nano Letters, 2017, 17(9): 5653-5659. |
[1] | Wenchao SHI, Yu LIU, Bomian ZHANG, Qi LI, Chunhua HAN, Liqiang MAI. Research progress and prospect on electrolyte additives for stabilizing the zinc anode interface in aqueous batteries [J]. Energy Storage Science and Technology, 2023, 12(5): 1589-1603. |
[2] | Huimin ZHANG, Jing WANG, Yibo WANG, Jiaxin ZHENG, Jingyi QIU, Gaoping CAO, Hao ZHANG. Multiscale modeling of the SEI of lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(2): 366-382. |
[3] | Jie WU, Xiaobiao JIANG, Yang YANG, Yongmin WU, Lei ZHU, Weiping TANG. Progress of NASICON-structured Li1+xAlxTi2-x(PO4)3 (0 ≤x≤ 0.5) solid electrolyte [J]. Energy Storage Science and Technology, 2020, 9(5): 1472-1488. |
[4] | GAO Xiang, ZHU Zirui. Applications of atomic force microscopy in lithium ion batteries research [J]. Energy Storage Science and Technology, 2019, 8(1): 75-82. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||