Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (5): 1392-1408.doi: 10.19799/j.cnki.2095-4239.2023.0254
• Special Issue on Key Materials and Recycling Technologies for Energy Storage Batteries • Previous Articles Next Articles
Junlong ZHOU(), Lukang ZHAO, Zhaomeng LIU, Xuanwen GAO(), Wenbin LUO
Received:
2023-03-21
Revised:
2023-04-22
Online:
2023-05-05
Published:
2023-05-29
Contact:
Xuanwen GAO
E-mail:2271862@stu.neu.edu.cn;gaoxuanwen@mail.neu.edu.cn
CLC Number:
Junlong ZHOU, Lukang ZHAO, Zhaomeng LIU, Xuanwen GAO, Wenbin LUO. Advances in the research of quantum dots anode for alkali metal ion batteries[J]. Energy Storage Science and Technology, 2023, 12(5): 1392-1408.
Fig. 2
(a) Schematic of the synthesis route of MQDC-SnO2/RGO[32]; (b) Schematic illustration of the fabrication process of flexible ZnO@NPCF[37]; (c) Schematic illustration of lithiation for NP CoO x QDs/C anodes[41]; (d) Chematic diagram of the lithiation/delithiation process of the Ga2O3-QD@NC electrode[42]"
Fig. 3
(a) Low magnification TEM image of ZnS-QDs@mNC[54]; (b) Schematic illustration of ZnS-QDs@mNC before and after lithiation[54]; (c) Schematic illustration of the three main effects on WS2-PCNF10 for boosting ultrafast lithium storage performances[55]; (d) Schematic illustration of the reversible SEI layer formation on the CoS x @NSC-1 electrode[56]; (e) Specific capacities of the NSC and CoS x @NSC-y electrodes at varied current densities[56]"
Fig. 4
(a) Schematic representation of the Na+ storage mechanism for TiN/C composite anodes[61]; (b) Schematic illustration of lithiation and delithiation mechanisms for VN-bulk NPs, VN@NC NPs and VNQD@NC HSs[62]; (c) Cycling performance of VN-QDS/CM-600 at 0.5 A/g[63]; (d) TEM images of VNQD with NH4VO3[64]"
Fig. 5
(a) Schematic of the structures of CDs[67]; (b) Adsorption patterns for on four ions on C24H12, two ions on C24H12, five ions on C54H18, three ions on C54H18[68]; (c) TEM images of the GQDs@CNT[69]; (d) Schematic diagrams showing the formation of the hierarchical LTO/N-GQD/Super-P structure[71]; (e) Rate capability of pristine LTO and LTO-NGQ20 electrodes from 0.2 C to 50 C[71]"
Fig. 6
(a) Illustration the advantage of surface functional group-tailored BN-CQD structure[73]; (b) Schematic diagram of CDs@rGO stacked models[74]; (c) Schematic of the preparation process for LAP-rGO-CDs[75]; (d) Schematic illustration of the three main effects on the F-CQD@etched-Cu electrode for improving ultrafast cycling[78]"
Fig. 7
(a) Schematics of the lithiation and subsequent delithiation process of the 3DOP Ge@N-C anode and Ge/N-C anode[79]; (b) The difference charge density of SbQD@C at the heterogeneous interface (e/?3)[80]; (c) Proposed mechanism of the B@rGO anode during the lithium storage process; and schematic diagram of the stacked models at the cross-section[84]"
Table 1
Electrochemical properties of quantum dots and their composite materials"
Electrode material | Initial charge/discharge capacity /(mAh/g) | Current density (mA/g) | Cycle numbers | Capacity /(mAh/g) | Application | Refs |
---|---|---|---|---|---|---|
Metal oxide QDs | ||||||
MQDC-SnO2/RGO | 960/1620 | 1000 | 1000 | 505 | LIB | |
ZnO/RGO | 766/1027 | 1000 | 700 | 668 | LIB | |
NP CoOx QDs/C | 1253/2041 | 1000 | 900 | 1246 | LIB | |
Ga2O3-QD@NC | 993/1580 | 1000 | 300 | 460 | LIB | |
Fe3O4@C | 1204.3/1226.8 | 2000 | 800 | 601 | LIB | |
rGO QDs-MnO | 1669/3168 | 3000 | 200 | 603 | LIB | |
NOH | 1232.1/1921.67 | 2000 | 200 | 409 | LIB | |
Metal sulfide QDs | ||||||
SnS QDs@NC | 489/300 | 1000 | 500 | 172 | SIB | |
MoS2@SnS-QDs/CNN | 1416/1054 | 2000 | 1000 | 713 | LIB | |
ZnS-QDs@mNC | 1243/887 | 840 | 300 | 506 | LIB | |
WS2-PCNF | — | 2000 | 1000 | 470.6 | LIB | |
CoS x @NSC | 658/696 | 200 | 100 | 414 | SIB | |
Metal nitride QDs | ||||||
863/1488 | 2000 | 3000 | 378 | LIB | ||
WN@BCN | 763.9/940.9 | 1000 | 500 | 529 | LIB | |
TiN@C | 171/414 | 1000 | 5000 | 149 | SIB | |
VNQD@NC HSs | 376.2/465.2 | 1000 | 1000 | 306 | SIB | |
VN-QDs/CM | 274/376 | 500 | 500 | 215 | PIB | |
Carbon material QDs | ||||||
GQD@CNTs | 633/1029 | 1000 | 350 | 483 | LIB | |
C(ZIF-8)@GQDs | 264/708 | 100 | 200 | 425 | LIB | |
BN-CQDs | — | 3000 | 1000 | 103.4 | LIB | |
CDs@rGO | 310/698 | 200 | 840 | 244 | PIB | |
LAP(15)-rGO-CDs | 396/1290 | 1000 | 5000 | 299 | PIB | |
Elementary substance QDs | ||||||
3DOP Ge@N-C | 797/2493 | 5000 | 1200 | 1000 | LIB | |
Si QD clusters | 8151/1957 | 200 | 100 | 1232 | LIB | |
-/1489.6 | 1000 | 400 | 714.8 | LIB | ||
-/1176 | 200 | 500 | 685 | LIB | ||
BQDs/rGO | 1395/2651 | 2000 | 1000 | 374 | LIB | |
Other categories QDs | ||||||
Ni2P@NPC | 334/1351 | 1000 | 5000 | 212 | PIB | |
MoP@PC | — | 5000 | 1000 | 240 | PIB | |
a-SnSe/rGO | 610/873 | 1000 | 1400 | 397 | SIB | |
Fe2O3/MoO3@NG | — | 10000 | 1700 | 433.5 | LIB |
1 | ZHANG Z, ZHAO D C, XU Y Y, et al. A review on electrode materials of fast-charging lithium-ion batteries[J]. Chemical Record, 2022, 22(10): e202200127. |
2 | SUN C K, ZHANG X, LI C, et al. A presodiation strategy with high efficiency by utilizing low-price and eco-friendly Na2CO3 as the sacrificial salt towards high-performance pouch sodium-ion capacitors[J]. Journal of Power Sources, 2021, 515: 230628. |
3 | LIU J W, YUE M, WANG S Q, et al. A review of performance attenuation and mitigation strategies of lithium-ion batteries[J]. Advanced Functional Materials, 2022, 32(8): 2107769. |
4 | XU B, LEE J, KWON D, et al. Mitigation strategies for Li-ion battery thermal runaway: A review[J]. Renewable and Sustainable Energy Reviews, 2021, 150: 111437. |
5 | TRAN N, TA Q T H, TRAN V V. Review on the application of green and environmentally benign biowaste and natural substances in the synthesis of lithium-ion batteries[J]. International Journal of Energy Research, 2022, 46(10): 13251-13275. |
6 | BIN FAYYAZ AHSAN M, MEKHILEF S, SOON T K, et al. Lithium-ion battery and supercapacitor-based hybrid energy storage system for electric vehicle applications: A review[J]. International Journal of Energy Research, 2022, 46(14): 19826-19854. |
7 | HU Z, HAO J X, SHEN D Y, et al. Electro-spraying/spinning: A novel battery manufacturing technology[J]. Green Energy & Environment, 2022 |
8 | LIU Z M, WANG J, LU B G. Plum pudding model inspired KVPO4F@3DC as high-voltage and hyperstable cathode for potassium ion batteries[J]. Science Bulletin, 2020, 65(15): 1242-1251. |
9 | LIU Z M, WANG J, DING H B, et al. Carbon nanoscrolls for aluminum battery[J]. ACS Nano, 2018, 12(8): 8456-8466. |
10 | WANG J, LIU Z M, ZHOU J, et al. Insights into metal/metalloid-based alloying anodes for potassium ion batteries[J]. ACS Materials Letters, 2021, 3(11): 1572-1598. |
11 | PARK G D, PARK J S, KIM J K, et al. Recent advances in heterostructured anode materials with multiple anions for advanced alkali-ion batteries[J]. Advanced Energy Materials, 2021, 11(27): 2003058. |
12 | BI J X, DU Z Z, SUN J M, et al. On the road to the frontiers of lithium-ion batteries: A review and outlook of graphene anodes[J]. Advanced Materials, 2023, 35(16). |
13 | QIAO Y, ZHAO H P, SHEN Y L, et al. Recycling of graphite anode from spent lithium-ion batteries: Advances and perspectives[J]. EcoMat, 2023, 5(4). |
14 | LIU Z M, WANG J, JIA X X, et al. Graphene armored with a crystal carbon shell for ultrahigh-performance potassium ion batteries and aluminum batteries[J]. ACS Nano, 2019, 13(9): 10631-10642. |
15 | 蒋龙进, 张顺, 乔羽, 等. 废旧锂电池负极石墨失效机制及回收利用研究进展[J]. 储能科学与技术, 2023, 12(3): 822-834. |
JIANG L J, ZHANG S, QIAO Y, et al. A review of failure mechanisms and anode graphite recycling from spent lithium-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(3): 822-834. | |
16 | ARISTOTE N T, SONG Z R, DENG W T, et al. Effect of double and triple-doping of sulfur, nitrogen and phosphorus on the initial coulombic efficiency and rate performance of the biomass derived hard carbon as anode for sodium-ion batteries[J]. Journal of Power Sources, 2023, 558: 232517. |
17 | WANG S E, KIM M J, LEE J W, et al. A novel high-performance TiO2- x/TiO1- yNy coating material for silicon anode in lithium-ion batteries[J]. Small Methods, 2022, 6(7): 2200430. |
18 | SHI J W, GAO H Y, HU G X, et al. Nanostructured SiOx-based anodes synthesized by a scalable micelle assisted method for high-performance lithium-ion battery[J]. Materials Chemistry and Physics, 2022, 291: 126721. |
19 | SHI H F, ZHANG W Y, WANG J S, et al. Scalable synthesis of a porous structure silicon/carbon composite decorated with copper as an anode for lithium ion batteries[J]. Applied Surface Science, 2023, 620: 156843. |
20 | RASAL A S, YADAV S, YADAV A, et al. Carbon quantum dots for energy applications: A review[J]. ACS Applied Nano Materials, 2021, 4(7): 6515-6541. |
21 | MENG D X, WEI L H, SHI J W, et al. A review of enhanced electrocatalytic composites hydrogen/oxygen evolution based on quantum dot[J]. Journal of Industrial and Engineering Chemistry, 2023, 121: 27-39. |
22 | YU Y, MA T, HUANG H. Semiconducting quantum dots for energy conversion and storage[J]. Advanced Functional Materials, 2023, 33(16): 2213770. |
23 | CHEN Y J, YU S, FAN X B, et al. Mechanistic insights into the influence of surface ligands on quantum dots for photocatalysis[J]. Journal of Materials Chemistry A, 2023, 11(16): 8497-8514. |
24 | YANG D, CUI Z J, WEN Z Q, et al. Recent updates on functionalized silicon quantum-dot-based nanoagents for biomedical applications[J]. ACS Materials Letters, 2023, 5(4): 985-1008. |
25 | LI M X, CHEN T, GOODING J J, et al. Review of carbon and graphene quantum dots for sensing[J]. ACS Sensors, 2019, 4(7): 1732-1748. |
26 | HUANG K, LIU J L, YUAN J J, et al. Perovskite-quantum dot hybrid solar cells: A multi-win strategy for high performance and stability[J]. Journal of Materials Chemistry A, 2023, 11(9): 4487-4509. |
27 | DU J K, LI Q M, CHAI J L, et al. Review of metal oxides as anode materials for lithium-ion batteries[J]. Dalton Transactions, 2022, 51(25): 9584-9590. |
28 | WANG Y R, ZHUANG Q F, LI Y, et al. Bio-inspired synthesis of transition-metal oxide hybrid ultrathin nanosheets for enhancing the cycling stability in lithium-ion batteries[J].Nano Research, 2022, 15(6): 5064-5071. |
29 | YANG X B, WANG H Q, SONG Y Y, et al. Low-temperature synthesis of a porous high-entropy transition-metal oxide as an anode for high-performance lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(23): 26873-26881. |
30 | CHEN Y, CHEN X Y, ZHANG Y L. A comprehensive review on metal-oxide nanocomposites for high-performance lithium-ion battery anodes[J]. Energy & Fuels, 2021, 35(8): 6420-6442. |
31 | KIM S S, JUNG S M, SENTHIL C, et al. Unlocking rapid charging and extended lifetimes for Li-ion batteries using freestanding quantum conversion-type aerofilm anode[J]. ACS Nano, 2021, 15(11): 18437-18447. |
32 | ZHU C L, ZHU S M, ZHANG K, et al. Confined SnO2 quantum-dot clusters in graphene sheets as high-performance anodes for lithium-ion batteries[J]. Scientific Reports, 2016, 6(1): 1-8. |
33 | WU C P, XIE K X, HE J P, et al. SnO2 quantum dots modified N-doped carbon as high-performance anode for lithium ion batteries by enhanced pseudocapacitance[J].Rare Metals, 2021, 40(1): 48-56. |
34 | WU K, SHI B W, QI L Y, et al. SnO2 quantum dots @ 3D sulfur-doped reduced graphene oxides as active and durable anode for lithium ion batteries[J]. Electrochimica Acta, 2018, 291: 24-30. |
35 | DONG C L, ZHANG X L, DONG W J, et al. ZnO/ZnS heterostructure with enhanced interfacial lithium absorption for robust and large-capacity energy storage[J]. Energy & Environmental Science, 2022, 15(11): 4738-4747. |
36 | FAIZAH F, PRIYONO B, CHAIRUNNISA Z E, et al. Zinc oxide nanoparticle and its characterization in the LTO/ZnO composite for lithium-ion battery anode[J]. IOP Conference Series: Materials Science and Engineering, 2021, 1098(6): 062027. |
37 | MA X, LI Z H, CHEN D K, et al. Nitrogen-doped porous carbon sponge-confined ZnO quantum dots for metal collector-free lithium ion battery[J]. Journal of Electroanalytical Chemistry, 2019, 848: 113275. |
38 | TAN Q K, KONG X L, GUAN X G, et al. Crystallization of zinc oxide quantum dots on graphene sheets as an anode material for lithium ion batteries[J]. CrystEngComm, 2020, 22(2): 320-329. |
39 | DONG X L, ZHANG Y T, CUI C S, et al. Study on the binary transition metal oxide Mn2V2O7 structures for high performance lithium-ion batteries[J]. Journal of Alloys and Compounds, 2022, 907: 164518. |
40 | ZHOU G L, DING W H, GUAN Y, et al. Progress of NiO-based anodes for high-performance Li-ion batteries[J]. The Chemical Record, 2022, 22(10): https://doi.org/10.1002/tcr.202200111. |
41 | LU D J, YUAN C, YU M C, et al. Nanoporous composites of CoOx quantum dots and ZIF-derived carbon as high-performance anodes for lithium-ion batteries[J]. ACS Omega, 2020, 5(34): 21488-21496. |
42 | WANG Y Y, XIONG Z S, ZHAO Y, et al. Ga2O3 quantum dots with N-doped amorphous carbon fixed for efficient storage and transfer of lithium ions by introduction of dopamine hydrochloride[J]. Langmuir, 2023, 39(10): 3628-3636. |
43 | HUANG Y X, LYU Y Y, ZOU Y L, et al. TiO2 quantum dots decorated Si nanocage for enhanced lithium ion batteries[J]. Journal of Electroanalytical Chemistry, 2023, 930: 117128. |
44 | LIU Y, DAI Y, JIANG X B, et al. Fe3O4 quantum dots embedded in porous carbon microspheres for long-life lithium-ion batteries[J]. Materials Today Energy, 2019, 12: 269-276. |
45 | ZHU X Q, LI J, LIU P, et al. Nitrogen-doped thermally reduced graphene oxide quantum dots-MnO composite toward enhanced-performance Li-ion battery[J]. Applied Physics A, 2018, 124(10): 722. |
46 | LIANG F H, WU D N, JIANG L, et al. Layered niobium oxide hydrate anode with excellent performance for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(43): 51057-51065. |
47 | WANG S C, QU C W, WEN J W, et al. Progress of transition metal sulfides used as lithium-ion battery anodes[J]. Materials Chemistry Frontiers, 2023: https://doi.org/10.1039/D2QM01200F. |
48 | ZHOU X H, SU K M, KANG W M, et al. Locking metal sulfide nanoparticles in interconnected porous carbon nanofibers with protective macro-porous skin as freestanding anodes for lithium ion batteries[J]. Chemical Engineering Journal, 2020, 397: 125271. |
49 | ZHANG B, XU B, XIAO Z, et al. Inner-stress-dissipative, rapid self-healing core-shell sulfide quantum dots for remarkable potassium-ion storage[J]. Energy Storage Materials, 2023, 56: 96-107. |
50 | ZHAO J B, ZHANG Y Y, WANG Y H, et al. The application of nanostructured transition metal sulfides as anodes for lithium ion batteries[J]. Journal of Energy Chemistry, 2018, 27(6): 1536-1554. |
51 | XU G B, YANG L W, WEI X L, et al. MoS2-quantum-dot-interspersed Li4Ti5O12 nanosheets with enhanced performance for li-and Na-ion batteries[J]. Advanced Functional Materials, 2016, 26(19): 3349-3358. |
52 | VEERASUBRAMANI G K, PARK M S, CHOI J Y, et al. Ultrasmall SnS quantum dots anchored onto nitrogen-enriched carbon nanospheres as an advanced anode material for sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(6): 7114-7124. |
53 | KE G X, CHEN H H, HE J, et al. Ultrathin MoS2 anchored on 3D carbon skeleton containing SnS quantum dots as a high-performance anode for advanced lithium ion batteries[J]. Chemical Engineering Journal, 2021, 403: 126251. |
54 | FANG D L, CHEN S M, WANG X, et al. ZnS quantum dots@multilayered carbon: Geological-plate-movement-inspired design for high-energy Li-ion batteries[J]. Journal of Materials Chemistry A, 2018, 6(18): 8358-8365. |
55 | SHIN D Y, LEE J S, KOO B R, et al. Hierarchical hybrid nanostructure of 1T-tungsten disulfide quantum dots/multihollow capillary bundle-type mesoporous carbon for ultrafast and ultrastable lithium storage[J]. Chemical Engineering Journal, 2021, 412: 128547. |
56 | GUO Q B, MA Y F, CHEN T T, et al. Cobalt sulfide quantum dot embedded N/S-doped carbon nanosheets with superior reversibility and rate capability for sodium-ion batteries[J]. ACS Nano, 2017, 11(12): 12658-12667. |
57 | WANG P Y, ZHAO B C, BAI J, et al. Transition metal nitrides in lithium-and sodium-ion batteries: Recent progress and perspectives[J]. Advanced Materials Interfaces, 2022, 9(24): 2200606. |
58 | LIU R J, YANG L X, ZHANG T Y, et al. Nano-sheet and nano-laminar vanadium nitride as anodes for high-performance lithium-ions storage[J]. International Journal of Energy Research, 2022, 46(15): 22486-22500. |
59 | YI H, HUANG Y, SHA Z C, et al. Facile synthesis of Mo2N quantum dots embedded N-doped carbon nanosheets composite as advanced anode materials for lithium-ion batteries[J]. Materials Letters, 2020, 276: 128205. |
60 | LIU C X, WANG C, MENG X W, et al. Tungsten nitride nanoparticles anchored on porous borocarbonitride as high-rate anode for lithium ion batteries[J]. Chemical Engineering Journal, 2020, 399: 125705. |
61 | LIU M, ZHANG Z L, XIE Y Y, et al. Titanium nitride as a promising sodium-ion battery anode: Interface-confined preparation and electrochemical investigation[J]. Dalton Transactions, 2022, 51(34): 12855-12865. |
62 | YUAN J, HU X, CHEN J X, et al. In situ formation of vanadium nitride quantum dots on N-doped carbon hollow spheres for superior lithium and sodium storage[J]. Journal of Materials Chemistry A, 2019, 7(15): 9289-9296. |
63 | WU H Y, YU Q Y, LAO C Y, et al. Scalable synthesis of VN quantum dots encapsulated in ultralarge pillared N-doped mesoporous carbon microsheets for superior potassium storage[J]. Energy Storage Materials, 2019, 18: 43-50. |
64 | MURALIDHARAN P, YUN J H, PONRAJ R, et al. Melamine-assisted synthesis of vanadium nitride quantum dots: Application for full-cell lithium-ion batteries[J]. Journal of Alloys and Compounds, 2021, 888: 161522. |
65 | YUAN S, LAI Q H, DUAN X, et al. Carbon-based materials as anode materials for lithium-ion batteries and lithium-ion capacitors: A review[J]. Journal of Energy Storage, 2023, 61: 106716. |
66 | 苑雪, 李洪基, 白文慧, 等. 生物质衍生碳基材料在钠离子电池负极中的应用[J]. 储能科学与技术, 2023, 12(3): 721-742. |
YUAN X, LI H J, BAI W H, et al. Application of biomass-derived carbon-based anode materials in sodium ion battery[J]. Energy Storage Science and Technology, 2023, 12(3): 721-742. | |
67 | GUO R T, LI L, WANG B W, et al. Functionalized carbon dots for advanced batteries[J]. Energy Storage Materials, 2021, 37: 8-39. |
68 | PATTARAPONGDILOK N, PARASUK V. Adsorptions of lithium ion/atom and packing of Li ions on graphene quantum dots: Application for Li-ion battery[J]. Computational and Theoretical Chemistry, 2020, 1177: 112779. |
69 | ZHAO X W, WU Y Z, WANG Y S, et al. High-performance Li-ion batteries based on graphene quantum dot wrapped carbon nanotube hybrid anodes[J].Nano Research, 2020, 13(4): 1044-1052. |
70 | YU H, ZHU W J, ZHOU H, et al. Porous carbon derived from metal-organic framework@graphene quantum dots as electrode materials for supercapacitors and lithium-ion batteries[J]. RSC Advances, 2019, 9(17): 9577-9583. |
71 | KHAN F, OH M, KIM J H. N-functionalized graphene quantum dots: Charge transporting layer for high-rate and durable Li4Ti5O12-based Li-ion battery[J]. Chemical Engineering Journal, 2019, 369: 1024-1033. |
72 | VIJAYA KUMAR SAROJA A P, GARAPATI M S, SHYIAMALADEVI R, et al. Facile synthesis of heteroatom doped and undoped graphene quantum dots as active materials for reversible lithium and sodium ions storage[J]. Applied Surface Science, 2020, 504: 144430. |
73 | KIM K H, AHN H J. Surface functional group-tailored B and N co-doped carbon quantum dot anode for lithium-ion batteries[J]. International Journal of Energy Research, 2022, 46(6): 8367-8375. |
74 | ZHANG E J, JIA X X, WANG B, et al. Carbon dots@rGO paper as freestanding and flexible potassium-ion batteries anode[J]. Advanced Science, 2020, 7(15): 2000470. |
75 | DONG S, SONG Y L, FANG Y Z, et al. Microwave-assisted synthesis of carbon dots modified graphene for full carbon-based potassium ion capacitors[J]. Carbon, 2021, 178: 1-9. |
76 | JAVED M, SAQIB A N S, ATA-UR-REHMAN, et al. Carbon quantum dots from glucose oxidation as a highly competent anode material for lithium and sodium-ion batteries[J]. Electrochimica Acta, 2019, 297: 250-257. |
77 | KRAJEWSKI M, CHEN C H, HUANG Z T, et al. Li4Ti5O12 coated by biomass-derived carbon quantum dots as anode material with enhanced electrochemical performance for lithium-ion batteries[J]. Energies, 2022, 15(20): 7715. |
78 | SHIN D Y, SUNG K W, AHN H J. Fluorine-doped carbon quantum dot interfacial layer on stockade-like etched copper foil for boosting Li-ion storage[J]. Chemical Engineering Journal, 2021, 413: 127563. |
79 | WANG Y, LUO S N, CHEN M, et al. Uniformly confined germanium quantum dots in 3D ordered porous carbon framework for high-performance Li-ion battery[J]. Advanced Functional Materials, 2020, 30(16): 2000373. |
80 | QIU T Y, YANG L, XIANG Y E, et al. Heterogeneous interface design for enhanced sodium storage: Sb quantum dots confined by functional carbon[J]. Small Methods, 2021, 5(7): 2100188. |
81 | CHOI Y H, PARK H, LEE S, et al. Synthesis and electrochemical performance of π-conjugated molecule bridged silicon quantum dot cluster as anode material for lithium-ion batteries[J]. ACS Omega, 2020, 5(15): 8629-8637. |
82 | HU W, HE K, WU S, et al. Ordered sandwich silicon quantum dot/Fe3O4/reduced graphene oxide architectures for high-performance lithium-ion batteries[J]. Journal of Alloys and Compounds, 2023, 943: 168947. |
83 | ZHANG G H, ZHU J, ZENG W, et al. Tin quantum dots embedded in nitrogen-doped carbon nanofibers as excellent anode for lithium-ion batteries[J]. Nano Energy, 2014, 9: 61-70. |
84 | WANG H Q, AN D, TIAN P Z, et al. Incorporating quantum-sized boron dots into 3D cross-linked rGO skeleton to enable the activity of boron anode for favorable lithium storage[J]. Chemical Engineering Journal, 2021, 425: 130659. |
85 | GE H, CUI L X, ZHANG B, et al. Ag quantum dots promoted Li4Ti5O12/TiO2 nanosheets with ultrahigh reversible capacity and super rate performance for power lithium-ion batteries[J]. Journal of Materials Chemistry A, 2016, 4(43): 16886-16895. |
86 | WANG D, ZHOU J S, LI J K, et al. Cobalt-boron nanoparticles anchored on graphene as anode of lithium ion batteries[J]. Chemical Engineering Journal, 2019, 360: 271-279. |
87 | WANG S, ZHANG X B. N-doped C@Zn3B2O6 as a low cost and environmentally friendly anode material for Na-ion batteries: High performance and new reaction mechanism[J]. Advanced Materials, 2019, 31(5): 1805432. |
88 | YAN Z H, HUANG Z Y, YAO Y, et al. Monodispersed Ni2P nanodots embedded in N, P co-doped porous carbon as super stable anode material for potassium-ion batteries[J]. Journal of Alloys and Compounds, 2021, 858: 158203. |
89 | YAN Z H, HUANG Z Y, ZHOU H H, et al. Facile fabrication of MoP nanodots embedded in porous carbon as excellent anode material for potassium-ion batteries[J]. Journal of Energy Chemistry, 2021, 54: 571-578. |
90 | WANG M S, PENG A M, XU H, et al. Amorphóus SnSe quantum dots anchoring on graphene as high performance anodes for battery/capacitor sodium ion storage[J]. Journal of Power Sources, 2020, 469: 228414. |
91 | NI G X, ZHANG Y J, LI Y Z, et al. SnSe quantum dots anchored on few-layered Ti3C2 as anodes for sodium ion batteries with enhanced cycling stability[J]. New Journal of Chemistry, 2023, 47(14): 6540-6550. |
92 | LIU W, YUAN J J, HAO Y C, et al. Heterogeneous structured MoSe2-MoO3 quantum dots with enhanced sodium/potassium storage[J]. Journal of Materials Chemistry A, 2020, 8(44): 23395-23403. |
93 | DING J, SHENG R, ZHANG Y, et al. Fe2O3/MoO3@NG heterostructure enables high pseudocapacitance and fast electrochemical reaction kinetics for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(33): 37747-37758. |
[1] | Chang LIU, Junjun YAO, Ying SUN, Daming FENG, Hongjie ZHENG, Tianyi MA. Coordinated preparation of pitch-based carbon microspheres for anode materials of high-rate potassium-ion batteries by emulsification/oxidation [J]. Energy Storage Science and Technology, 2023, 12(5): 1444-1452. |
[2] | Jidong ZHANG, Zhan YANG, Jianguo HUANG. Fabrication and electrochemical performance of micro-nanostructured C/TiO2/CuMoO4 fibrous composite based on natural cellulose [J]. Energy Storage Science and Technology, 2023, 12(5): 1616-1624. |
[3] | Yuhua BIAN, Zhaomeng LIU, Xuanwen GAO, Jianguo LI, Da WANG, Shangzhuo LI, Wenbin LUO. Role of CoS2/NC in ether-based electrolytes as high-performance anodes for sodium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(5): 1500-1509. |
[4] | Jin WANG, Shaofei ZHANG, Jinfeng SUN, Tiantian LI. Rapid oxidation of nanoporous alloys by self-combustion and their high-efficiency energy storage performance [J]. Energy Storage Science and Technology, 2023, 12(5): 1480-1489. |
[5] | Yuwen ZHAO, Huan YANG, Junpeng GUO, Yi ZHANG, Qi SUN, Zhijia ZHANG. Application of magnetic metal elements in sodium ion batteries [J]. Energy Storage Science and Technology, 2023, 12(5): 1332-1347. |
[6] | Yongshi YU, Xianming XIA, Hongyang HUANG, Yu YAO, Xianhong RUI, Guobin ZHONG, Wei SU, Yan YU. Research progress on sodium metal anode modified by artificial interface layer [J]. Energy Storage Science and Technology, 2023, 12(5): 1380-1391. |
[7] | Junpeng GUO, Qi SUN, Yuefang CHEN, Yuwen ZHAO, Huan YANG, Zhijia ZHANG. Preparation of three-dimensional multistage iron oxide/carbon nanofiber integrated electrode and sodium storage performance [J]. Energy Storage Science and Technology, 2023, 12(5): 1469-1479. |
[8] | Jing ZHU, Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Junfeng HAO, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yida WU, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Feb. 1, 2023 to Mar. 31, 2023) [J]. Energy Storage Science and Technology, 2023, 12(5): 1553-1569. |
[9] | Xueli CHENG, Weifu ZHANG, Chengcheng LUO, Xiaoya YUAN. Preparation of three-dimensional graphene/Fe3O4 composites by one-step hydrothermal method and their lithium storage performance [J]. Energy Storage Science and Technology, 2023, 12(4): 1066-1074. |
[10] | Jingjing RUAN, Fuyuan LIU, Shenshen LI, Guihong GAO, Yanxia LIU. Preparation of rod-like silicon-based material by carbon reduction and its application in lithium slurry batteries [J]. Energy Storage Science and Technology, 2023, 12(4): 1051-1058. |
[11] | Cai TANG, Jiangmin JIANG, Xinfeng WANG, Guangfa LIU, Yanhua CUI, Quanchao ZHUANG. Research progress of Li/CF x primary batteries [J]. Energy Storage Science and Technology, 2023, 12(4): 1093-1109. |
[12] | Wen ZHANG, Shuang LI, Cheng CHEN, Qiang SHEN. Effect of in situ solidification on the performance of silicon oxide anode [J]. Energy Storage Science and Technology, 2023, 12(4): 1045-1050. |
[13] | Xue YUAN, Hongji LI, Wenhui BAI, Zhengxi LI, Libin YANG, Kai WANG, Zhe CHEN. Application of biomass-derived carbon-based anode materials in sodium ion battery [J]. Energy Storage Science and Technology, 2023, 12(3): 721-742. |
[14] | Yuting ZHU, Gongqin YAN, Yuqian LIN. Electrochemical properties and First-principles study of MoS2/rGO composite [J]. Energy Storage Science and Technology, 2023, 12(3): 698-709. |
[15] | Zezheng WANG, Wenhao QU, Yajun WANG, Run QIN, Yibing LIU. Simulation and stress analysis of large capacity composite flywheel rotor [J]. Energy Storage Science and Technology, 2023, 12(3): 669-675. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||