Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (5): 1409-1426.doi: 10.19799/j.cnki.2095-4239.2023.0256
• Special Issue on Key Materials and Recycling Technologies for Energy Storage Batteries • Previous Articles Next Articles
Xuanchen WANG(), Da WANG, Zhaomeng LIU(
), Xuanwen GAO, Wenbin LUO
Received:
2023-04-21
Revised:
2023-04-26
Online:
2023-05-05
Published:
2023-05-29
Contact:
Zhaomeng LIU
E-mail:2271795@stu.neu.edu.cn;liuzhaomeng@smm.neu.edu.cn
CLC Number:
Xuanchen WANG, Da WANG, Zhaomeng LIU, Xuanwen GAO, Wenbin LUO. Research progress and prospect of potassium ion battery electrolyte[J]. Energy Storage Science and Technology, 2023, 12(5): 1409-1426.
Fig. 1
(a) Relationships between battery components and electrochemical performance; (b) Comparison of energy densities of lithium-ion, sodium-ion, and potassium-ion batteries[22]; (c) The distribution of Li, Na, and K in the Earth[23]; (d) Proportion of research on organic liquid electrolytes, aqueous electrolytes, ionic liquid electrolytes, and solid-state electrolytes[24]; (e) Problems in electrolyte of potassium ion batteries[25]"
Fig. 2
(a) Crystal structure of common organic solvents and salts of potassium ion batteries[25]; (b) HOMO and LUMO energy levels of solvent molecules and potassium salts: FSI- and DME in DME electrolyte. FSI-, EC, and DEC in EC/DEC electrolyte[28]; (c) The LUMO and HOMO energy levels of commonly used solvents and potassium salts in PIBs"
Fig. 3
(a) An illustration that compares the hazardous properties of traditional (carbonate and ether-based) and non-flammable (phosphate ester-based) electrolytes; (b) Flame tests of various electrolytes[30]; (c) Schematic illustration of the proposed stabilization effects of electrolyte on the SEI layer of Bi/rGO electrode[32]; (d) Cycling curves of K|K symmetric cells with different electrolytes at a current density of 1 mA/cm2; (e) 0.9 mol/L KFSI TEP passivation; (f) 2 mol/L KFSI TEP passivation[33]; (g) In-situ optical observations of K metal plating on copper substrate in 0.8 mol/L KPF6 EC/DEC, 1 mol/L KFSI EC/DEC, and 3∶8 (KFSI∶TMP)[34]"
Fig. 4
(a) Schematic illustration of di?erent SEI layers formed on the surface of graphite and their evolution after many cycles; (b) Comparing galvanostatic K plating and stripping on the Cu substrate among different electrolyte formulations at the rate of 0.05 mA/cm2[47]; (c) Schematic illustration for graphite response in different electrolytes[52]; (d) Stage structure evolutions during K intercalation[51]; (e) Schematic illustration of the potassiation/depotassiation process in SnSb/C electrode[56]"
Fig. 7
K+ migration maps as Voronoi graphs (hereafter shown by green lines) of voids ZA obtained within the geometrical-topological approach in the K2CoSiO4 (a), K4Fe2O5 (b) and K6V2P4O16 (c) crystal structures[80]; (d) Nyquist plots of V0T0 (left) and V150T10 (right) at 100 ℃ and 150 ℃, test with a stainless steel ||KNH2|| stainless steel cell; (e) ionic conductivities and activation energies of V0T0 and V150T10[81]"
Fig. 8
(a) High voltage cell configuration by coupling a high voltage honeycomb layered framework with a suitable anode and an ionic liquid based on potassium 1-methyl-1-propylpyrrolidine bis (trifluoromethylsulfonyl) amide (KTFSA) salt; (b) Cyclic Voltammetric Curves of 5 mV/s K, Na, Li[62]; (c) long-term cycling performance at 50 mA/g (up); Electrolyte: Pyr14TFSI + 0.3 mol/L KTFSI+2% ES, Potential profiles of graphite/K metal dual-ion cells for selected cycles between 3.4 V and 5.0 V vs. K/K+ at a charge/discharge current of 50 mA/g (down)[84]"
Table 1
Electrochemical performance of K-ion batteries with various electrolytes"
Materials | Electrolyte | Current density@Cycle number | Capacity/(mAh/g) | Refs |
---|---|---|---|---|
Graphite | 1 mol/L KPF6 EC/DEC | 20 mA/g@200 | 246 | [ |
K0.5MnO2 | 1 mol/L KFSI FTEP | 100 mA/g @100 | 75 | [ |
K1.7Fe[Fe(CN)6]0.9 | 0.5 mol/L KPF6 EC/DEC | 100 mA/g @100 | 140 | [ |
Graphite | 3∶8 (KFSI∶TMP) | 0.2 C@2000 | 220 | [ |
Graphite | 2 mol/L KFSI TEP | 0.2 C@500 | 275 | [ |
Bi/rGO | 0.8 mol/L KFSI EC/DEC | 50 mA/g@50 | 290 | [ |
Graphite | 1 mol/L KPF6 EC/DME | 50 mA/g@500 | 220 | [ |
TiS2 | 1 mol/L KPF6 DME | 4.8 A/g@600 | 63 | [ |
Graphite | 1 mol/L KPF6 DME | 2.8 A/g@3500 | 87 | [ |
PAQS | 1 mol/L KOH | 2 A/g@10000 | 128 | [ |
PAQS-K | 0.5 mol/L KTFSI DOL/DME | 20 mA/g@50 | 190 | [ |
KTi2(PO4)3 | 30 mol/L KAc | 1 A/g@11000 | 58 | [ |
K x Fe y Mn1-y [Fe(CN)6] w ·zH2O | 22 mol/L KCF3SO3 | 100 C@10000 | 94 | [ |
PTCDA | PPCB-SPEs | 20 mA/g@40 | 113 | [ |
K/PEO 50%KFSI/Ni3S2@Ni | PEO-KFSI | 25 mA/g@100 | 312 | [ |
K-S | K-BASE | C/4.2@1000 | 297 | [ |
Graphite | Pyr14TFSI | 250 mA/g@1500 | 42 | [ |
K2/3Ni2/3Te1/3O2 | KTFSI/Pyr13TFSA | C/20@100 | 128 | [ |
K2Mn[Fe(CN)6] | K(PF6)0.75(FSA)0.25/EC/DEC | 15.5 mA/g@20 | 130 | [ |
KPB@PPy@Cloth | KCl-PVA | 500 mA/g@200 | 107 | [ |
1 | TANG Y X, ZHANG Y Y, LI W L, et al. Rational material design for ultrafast rechargeable lithium-ion batteries[J]. Chemical Society Reviews, 2015, 44(17): 5926-5940. |
2 | HARPER G, SOMMERVILLE R, KENDRICK E, et al. Recycling lithium-ion batteries from electric vehicles[J]. Nature, 2019, 575(7781): 75-86. |
3 | VERMA R, R K, VARADARAJU U V. In-situ carbon coated CuCo2S4 anode material for Li-ion battery applications[J]. Applied Surface Science, 2017, 418: 30-39. |
4 | VERMA R, PARK C J, KOTHANDARAMAN R, et al. Ternary lithium molybdenum oxide, Li2Mo4O13: A new potential anode material for high-performance rechargeable lithium-ion batteries[J]. Electrochimica Acta, 2017, 258: 1445-1452. |
5 | HU Z, HAO J X, SHEN D Y, et al. Electro-spraying/spinning: A novel battery manufacturing technology[J]. Green Energy & Environment, 2022, doi: 10.1016/j.gee.2022.05.004. |
6 | HOSAKA T, KUBOTA K, HAMEED A S, et al. Research development on K-ion batteries[J]. Chemical Reviews, 2020, 120(14): 6358-6466. |
7 | VERMA R, SINGHBABU Y N, DIDWAL P N, et al. Biowaste orange peel-derived mesoporous carbon as a cost-effective anode material with ultra-stable cyclability for potassium-ion batteries[J]. Batteries & Supercaps, 2020, 3(10): 1099-1111. |
8 | VERMA R, DIDWAL P N, KI H S, et al. SnP3/carbon nanocomposite as an anode material for potassium-ion batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(30): 26976-26984. |
9 | LIU Z M, WANG J, LU B G. Plum pudding model inspired KVPO4F@3DC as high-voltage and hyperstable cathode for potassium ion batteries[J]. Science Bulletin, 2020, 65(15): 1242-1251. |
10 | WANG J, LIU Z M, ZHOU J, et al. Insights into metal/metalloid-based alloying anodes for potassium ion batteries[J]. ACS Materials Letters, 2021, 3(11): 1572-1598. |
11 | ZHANG J Y, YAO X H, MISRA R K, et al. Progress in electrolytes for beyond-lithium-ion batteries[J]. Journal of Materials Science & Technology, 2020, 44: 237-257. |
12 | ZHONG C, DENG Y D, HU W B, et al. A review of electrolyte materials and compositions for electrochemical supercapacitors[J]. Chemical Society Reviews, 2015, 44(21): 7484-7539. |
13 | LIU Z M, WANG J, DING H B, et al. Carbon nanoscrolls for aluminum battery[J]. ACS Nano, 2018, 12(8): 8456-8466. |
14 | LIU Z M, WANG J, JIA X X, et al. Graphene armored with a crystal carbon shell for ultrahigh-performance potassium ion batteries and aluminum batteries[J]. ACS Nano, 2019, 13(9): 10631-10642. |
15 | EFTEKHARI A, JIAN Z L, JI X L. Potassium secondary batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(5): 4404-4419. |
16 | XU K. Electrolytes and interphases in Li-ion batteries and beyond[J]. Chemical Reviews, 2014, 114(23): 11503-11618. |
17 | 褚绅旭, 杨倩, 李思远, 等. 钾离子电池合金负极与电解液界面作用的研究进展[J]. 工程科学学报, 2023, 45(7): 1101-1115. |
CHU S X, YANG Q, LI S Y, et al. Research progress on the interface interaction between alloys and electrolytes in potassium-ion batteries[J]. Chinese Journal of Engineering, 2023, 45(7): 1101-1115. | |
18 | DHIR S, WHEELER S, CAPONE I, et al. Outlook on K-ion batteries[J]. Chem, 2020, 6(10): 2442-2460. |
19 | FAN S S, LIU H P, LIU Q, et al. Comprehensive insights and perspectives into the recent progress of electrode materials for non-aqueous K-ion battery[J]. Journal of Materiomics, 2020, 6(2): 431-454. |
20 | REN X D, ZHAO Q, MCCULLOCH W D, et al. MoS2 as a long-life host material for potassium ion intercalation[J]. Nano Research, 2017, 10(4): 1313-1321. |
21 | 陈强, 李敏, 李敬发. 普鲁士蓝类似物及其衍生物在钾离子电池中的应用[J]. 储能科学与技术, 2021, 10(3): 1002-1015. |
CHEN Q, LI M, LI J F. Application of Prussian blue analogs and their derivatives in potassium ion batteries[J]. Energy Storage Science and Technology, 2021, 10(3): 1002-1015. | |
22 | VERMA R, DIDWAL P N, HWANG J Y, et al. Recent progress in electrolyte development and design strategies for next-generation potassium-ion batteries[J]. Batteries & Supercaps, 2021, 4(9): 1428-1450. |
24 | XU Y F, DING T J, SUN D M, et al. Recent advances in electrolytes for potassium-ion batteries[J]. Advanced Functional Materials, 2023, 33(6): 2211290. |
25 | LIU Y W, GAO C, DAI L, et al. The features and progress of electrolyte for potassium ion batteries[J]. Small, 2020, 16(44): 2004096. |
26 | PELJO P, GIRAULT H H. Electrochemical potential window of battery electrolytes: The HOMO-LUMO misconception[J]. Energy & Environmental Science, 2018, 11(9): 2306-2309. |
27 | QIAN J F, CHEN Y, WU L, et al. High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries[J]. Chemical Communications, 2012, 48(56): 7070-7072. |
28 | LI B F, ZHAO J, ZHANG Z H, et al. Electrolyte-regulated solid-electrolyte interphase enables long cycle life performance in organic cathodes for potassium-ion batteries[J]. Advanced Functional Materials, 2018: 1807137. |
29 | ZHAO J, ZOU X X, ZHU Y J, et al. Electrochemical intercalation of potassium into graphite[J]. Advanced Functional Materials, 2016, 26(44): 8103-8110. |
30 | FAN L, XIE H B, HU Y Y, et al. A tailored electrolyte for safe and durable potassium ion batteries[J]. Energy & Environmental Science, 2023, 16(1): 305-315. |
31 | HE G, NAZAR L F. Crystallite size control of Prussian white analogues for nonaqueous potassium-ion batteries[J]. ACS Energy Letters, 2017, 2(5): 1122-1127. |
32 | ZHANG Q, MAO J F, PANG WEI KONG, et al. Boosting the potassium storage performance of alloy-based anode materials via electrolyte salt chemistry[J]. Advanced Energy Materials, 2018, 8(15): 1703288. |
33 | LIU S L, MAO J F, ZHANG Q, et al. An intrinsically non-flammable electrolyte for high-performance potassium batteries[J]. Angewandte Chemie International Edition, 2020, 59(9): 3638-3644. |
34 | LIU S L, MAO J F, ZHANG L, et al. Manipulating the solvation structure of nonflammable electrolyte and interface to enable unprecedented stability of graphite anodes beyond 2 years for safe potassium-ion batteries[J]. Advanced Materials, 2021, 33(1): 2006313. |
35 | WANG L, SONG J, QIAO R M, et al. Rhombohedral Prussian white as cathode for rechargeable sodium-ion batteries[J]. Journal of the American Chemical Society, 2015, 137(7): 2548-2554. |
36 | TANG Y, ZHANG W X, XUE L H, et al. Polypyrrole-promoted superior cyclability and rate capability of NaxFe[Fe(CN)6] cathodes for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2016, 4(16): 6036-6041. |
37 | ZHANG M W, LIANG R L, OR T, et al. Recent progress on high-performance cathode materials for zinc-ion batteries[J]. Small Structures, 2021, 2(2): 2000064. |
38 | XIE J P, LI J L, ZHUO W C, et al. Recent progress of electrode materials cooperated with potassium bis(fluorosulfonyl)imide-containing electrolyte for K-ion batteries[J]. Materials Today Advances, 2020, 6: 100035. |
39 | FAN L, CHEN S H, MA R F, et al. Ultrastable potassium storage performance realized by highly effective solid electrolyte interphase layer[J]. Small, 2018, 14(30): 1801806. |
40 | GU M Y, FAN L, ZHOU J, et al. Regulating solvent molecule coordination with KPF6 for superstable graphite potassium anodes[J]. ACS Nano, 2021, 15(5): 9167-9175. |
41 | FAN L, MA R F, ZHANG Q F, et al. Graphite anode for a potassium-ion battery with unprecedented performance[J]. Angewandte Chemie International Edition, 2019, 58(31): 10500-10505. |
42 | YANG Y, LI P L, WANG N, et al. Fluorinated carboxylate ester-based electrolyte for lithium ion batteries operated at low temperature[J]. Chemical Communications, 2020, 56(67): 9640-9643. |
43 | CHEN C, WU M Q, LIU J H, et al. Effects of ester-based electrolyte composition and salt concentration on the Na-storage stability of hard carbon anodes[J]. Journal of Power Sources, 2020, 471: 228455. |
44 | MU J J, LIU Z M, LAI Q S, et al. An industrial pathway to emerging presodiation strategies for increasing the reversible ions in sodium-ion batteries and capacitors[J]. Energy Materials, 2022, 2(6): 200043. |
46 | 朱晓辉, 庄宇航, 赵旸, 等. 钠离子电池层状正极材料研究进展[J]. 储能科学与技术, 2020, 9(5): 1340-1349. |
ZHU X H, ZHUANG Y H, ZHAO Y, et al. Development of layered cathode materials for sodium-ion batteries[J]. Energy Storage Science and Technology, 2020, 9(5): 1340-1349. | |
47 | XIAO N, MCCULLOCH W D, WU Y Y. Reversible dendrite-free potassium plating and stripping electrochemistry for potassium secondary batteries[J]. Journal of the American Chemical Society, 2017, 139(28): 9475-9478. |
48 | HOSAKA T, KUBOTA K, KOJIMA H, et al. Highly concentrated electrolyte solutions for 4 V class potassium-ion batteries[J]. Chemical Communications, 2018, 54(60): 8387-8390. |
49 | YOSHIDA K, NAKAMURA M, KAZUE Y, et al. Oxidative-stability enhancement and charge transport mechanism in glyme-lithium salt equimolar complexes[J]. Journal of the American Chemical Society, 2011, 133(33): 13121-13129. |
50 | KATOROVA N S, FEDOTOV S S, RUPASOV D P, et al. Effect of concentrated diglyme-based electrolytes on the electrochemical performance of potassium-ion batteries[J]. ACS Applied Energy Materials, 2019, 2(8): 6051-6059. |
51 | YANG F, HAO J, LONG J, et al. Achieving high-performance metal phosphide anode for potassium ion batteries via concentrated electrolyte chemistry[J]. Advanced Energy Materials, 2021, 11(6): 2003346. |
52 | WANG L P, ZOU J, CHEN S L, et al. TiS2 as a high performance potassium ion battery cathode in ether-based electrolyte[J]. Energy Storage Materials, 2018, 12: 216-222. |
53 | WANG L P, YANG J Y, LI J, et al. Graphite as a potassium ion battery anode in carbonate-based electrolyte and ether-based electrolyte[J]. Journal of Power Sources, 2019, 409: 24-30. |
54 | LIM H D, LEE B, BAE Y, et al. Reaction chemistry in rechargeable Li-O2 batteries[J]. Chemical Society Reviews, 2017, 46(10): 2873-2888. |
55 | KIM D M, JUNG S C, HA S, et al. Cointercalation of Mg2+ ions into graphite for magnesium-ion batteries[J]. Chemistry of Materials, 2018, 30(10): 3199-3203. |
56 | YOON G, KIM H, PARK I, et al. Conditions for reversible Na intercalation in graphite: Theoretical studies on the interplay among guest ions, solvent, and graphite host[J]. Advanced Energy Materials, 2017, 7(2): 1601519. |
57 | WU J X, ZHANG Q, LIU S L, et al. Synergy of binders and electrolytes in enabling microsized alloy anodes for high performance potassium-ion batteries[J]. Nano Energy, 2020, 77: 105118. |
58 | JIANG L W, LU Y X, ZHAO C L, et al. Building aqueous K-ion batteries for energy storage[J]. Nature Energy, 2019, 4(6): 495-503. |
59 | WANG M T, WANG H Q, ZHANG H M, et al. Aqueous K-ion battery incorporating environment-friendly organic compound and Berlin green[J]. Journal of Energy Chemistry, 2020, 48: 14-20. |
60 | MASESE T, YOSHII K, YAMAGUCHI Y, et al. Rechargeable potassium-ion batteries with honeycomb-layered tellurates as high voltage cathodes and fast potassium-ion conductors[J]. Nature Communications, 2018, 9(1): 1-12. |
61 | JIAN Z L, LIANG Y L, RODRÍGUEZ-PÉREZ I A, et al. Poly(anthraquinonyl sulfide) cathode for potassium-ion batteries[J]. Electrochemistry Communications, 2016, 71: 5-8. |
62 | YOSHII K, MASESE T, KATO M, et al. Sulfonylamide-based ionic liquids for high-voltage potassium-ion batteries with honeycomb layered cathode oxides[J]. ChemElectroChem, 2019, 6(15): 3901-3910. |
63 | FENG Y H, LV Y W, MIHIR P, et al. Co-activation for enhanced K-ion storage in battery anodes[J]. National Science Review, 2023, doi: 10.1093/nsr/nwad118/7143135. |
64 | LEONARD D P, WEI Z X, CHEN G, et al. Water-in-salt electrolyte for potassium-ion batteries[J]. ACS Energy Letters, 2018, 3(2): 373-374. |
65 | ZHANG B K, WENG M Y, LIN Z, et al. Li-ion cooperative migration and oxy-sulfide synergistic effect in Li14P2Ge2S16-6 xOx solid-state-electrolyte enables extraordinary conductivity and high stability[J]. Small, 2020, 16(11): 1906374. |
66 | JIANG C, LI H Q, WANG C L. Recent progress in solid-state electrolytes for alkali-ion batteries[J]. Science Bulletin, 2017, 62(21): 1473-1490. |
67 | RAJAGOPALAN R, TANG Y G, JI X B, et al. Advancements and challenges in potassium ion batteries: A comprehensive review[J]. Advanced Functional Materials, 2020, 30(12): 1909486. |
68 | CHA J H, DIDWAL P N, KIM J M, et al. Poly(ethylene oxide)-based composite solid polymer electrolyte containing Li7La3Zr2O12 and poly(ethylene glycol) dimethyl ether[J]. Journal of Membrane Science, 2020, 595: 117538. |
69 | WANG H C, SHENG L, YASIN G, et al. Reviewing the current status and development of polymer electrolytes for solid-state lithium batteries[J]. Energy Storage Materials, 2020, 33: 188-215. |
70 | DIDWAL P, SINGHBABU Y N, VERMA R, et al. An advanced solid polymer electrolyte composed of poly(propylene carbonate) and mesoporous silica nanoparticles for use in all-solid-state lithium-ion batteries[J]. Energy Storage Materials, 2021, 37: 476-490. |
71 | LIU W, LEE S W, LIN D C, et al. Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires[J]. Nature Energy, 2017, 2(5): 1-7. |
72 | STEVENS J R, MELLANDER B E. Poly(ethylene oxide)-alkali metal-silver halide salt systems with high ionic conductivity at room temperature[J]. Solid State Ionics, 1986, 21(3): 203-206. |
73 | SREEKANTH T, JAIPAL REDDY M, SUBBA RAO U V. Polymer electrolyte system based on (PEO+KBrO3)—Its application as an electrochemical cell[J]. Journal of Power Sources, 2001, 93(1/2): 268-272. |
74 | SUBBA REDDY C V, SHARMA A K, NARASIMHA RAO V R. Characterization of a solid state battery based on polyblend of (PVP+PVA+KBrO3) electrolyte[J]. Ionics, 2004, 10(1): 142-147. |
75 | ACHARI V S, SHARMA A K, et al. Preparation and electrical characterization of (PVC+KBrO3) polymer electrolytes for solid state battery applications[J]. Ionics, 2007, 13(6): 435-439. |
76 | FEI H F, LIU Y N, AN Y L, et al. Stable all-solid-state potassium battery operating at room temperature with a composite polymer electrolyte and a sustainable organic cathode[J]. Journal of Power Sources, 2018, 399: 294-298. |
77 | YUAN H M, LI H, ZHANG T S, et al. A K2Fe4O7 superionic conductor for all-solid-state potassium metal batteries[J]. Journal of Materials Chemistry A, 2018, 6(18): 8413-8418. |
78 | FEI H F, LIU Y N, AN Y L, et al. Safe all-solid-state potassium batteries with three dimentional, flexible and binder-free metal sulfide array electrode[J]. Journal of Power Sources, 2019, 433: 226697. |
79 | LU X C, BOWDEN M E, SPRENKLE V L, et al. A low cost, high energy density, and long cycle life potassium-sulfur battery for grid-scale energy storage[J]. Advanced Materials, 2015, 27(39): 5915-5922. |
80 | EREMIN R A, KABANOVA N A, MORKHOVA Y A, et al. High-throughput search for potential potassium ion conductors: A combination of geometrical-topological and density functional theory approaches[J]. Solid State Ionics, 2018, 326: 188-199. |
81 | WANG J, LEI G T, HE T, et al. Defect-rich potassium amide: A new solid-state potassium ion electrolyte[J]. Journal of Energy Chemistry, 2022, 69: 555-560. |
82 | DOUX J M, LEGUAY L, LE GAL LA SALLE A, et al. K3Sb4O10(BO3): A solid state K-ion conductor[J]. Solid State Ionics, 2018, 324: 260-266. |
83 | ONUMA H, KUBOTA K, MURATSUBAKI S, et al. Application of ionic liquid as K-ion electrolyte of graphite//K2Mn[Fe(CN)6]cell[J]. ACS Energy Letters, 2020, 5(9): 2849-2857. |
84 | BELTROP K, BEUKER S, HECKMANN A, et al. Alternative electrochemical energy storage: Potassium-based dual-graphite batteries[J]. Energy & Environmental Science, 2017, 10(10): 2090-2094. |
85 | DE SOUZA R M, DE SIQUEIRA L J A, KARTTUNEN M, et al. Molecular dynamics simulations of polymer-ionic liquid (1-ethyl-3-methylimidazolium tetracyanoborate) ternary electrolyte for sodium and potassium ion batteries[J]. Journal of Chemical Information and Modeling, 2020, 60(2): 485-499. |
86 | MASESE T, YOSHII K, KATO M, et al. A high voltage honeycomb layered cathode framework for rechargeable potassium-ion battery: P2-type K2/3Ni1/3Co1/3Te1/3O2[J]. Chemical Communications, 2019, 55(7): 985-988. |
87 | DENG L Q, ZHANG Y C, WANG R T, et al. Influence of KPF6 and KFSI on the performance of anode materials for potassium-ion batteries: A case study of MoS2[J]. ACS Applied Materials & Interfaces, 2019, 11(25): 22449-22456. |
88 | HOSAKA T, MATSUYAMA T, KUBOTA K, et al. Development of KPF6/KFSA binary-salt solutions for long-life and high-voltage K-ion batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(31): 34873-34881. |
89 | LU K, ZHANG H, GAO S Y, et al. High rate and stable symmetric potassium ion batteries fabricated with flexible electrodes and solid-state electrolytes[J]. Nanoscale, 2018, 10(44): 20754-20760. |
[1] | Wenchao SHI, Yu LIU, Bomian ZHANG, Qi LI, Chunhua HAN, Liqiang MAI. Research progress and prospect on electrolyte additives for stabilizing the zinc anode interface in aqueous batteries [J]. Energy Storage Science and Technology, 2023, 12(5): 1589-1603. |
[2] | Yongshi YU, Xianming XIA, Hongyang HUANG, Yu YAO, Xianhong RUI, Guobin ZHONG, Wei SU, Yan YU. Research progress on sodium metal anode modified by artificial interface layer [J]. Energy Storage Science and Technology, 2023, 12(5): 1380-1391. |
[3] | Huimin ZHANG, Jing WANG, Yibo WANG, Jiaxin ZHENG, Jingyi QIU, Gaoping CAO, Hao ZHANG. Multiscale modeling of the SEI of lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(2): 366-382. |
[4] | Jun ZHANG, Qi LI, Ying TAO, Quanhong YANG. Sieving carbons for sodium-ion batteries: Origin and progress [J]. Energy Storage Science and Technology, 2022, 11(9): 2825-2833. |
[5] | Jinghua WU, Jing YANG, Gaozhan LIU, Zhiyan WANG, Zhihua ZHANG, Hailong YU, Xiayin YAO, Xuejie HUANG. Review and prospective of solid-state lithium batteries in the past decade (2011—2021) [J]. Energy Storage Science and Technology, 2022, 11(9): 2713-2745. |
[6] | Chaochao WEI, Chuang YU, Zhongkai WU, Linfeng PENG, Shijie CHENG, Jia XIE. Research progress of Li3PS4 solid electrolyte [J]. Energy Storage Science and Technology, 2022, 11(5): 1368-1382. |
[7] | Suting WENG, Zepeng LIU, Gaojing YANG, Simeng ZHANG, Xiao ZHANG, Qiu FANG, Yejing LI, Zhaoxiang WANG, Xuefeng WANG, Liquan CHEN. Cryogenic electron microscopy (cryo-EM) characterizing beam-sensitive materials in lithium metal batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 760-780. |
[8] | Shiwei DENG, Jianfang WU, Tuo SHI. Defect chemistry analysis of solid electrolytes: Point defects in grain bulk and grain boundary space-charge layer [J]. Energy Storage Science and Technology, 2022, 11(3): 939-947. |
[9] | Linsen ZHANG, Shiqi WANG, Lixia WANG, Yanhua SONG. Synthesis and performances of Li+ modified g-C3N4 for PEO-based composite solid electrolyte [J]. Energy Storage Science and Technology, 2022, 11(11): 3463-3469. |
[10] | Minhui LIAO, Daxiang YANG, Yang ZHOU, Renjie WAN, Ruiping LIU, Qiang WANG. Preparation and properties study of glass fiber cloth-based multilayer composite solid electrolyte [J]. Energy Storage Science and Technology, 2022, 11(10): 3090-3099. |
[11] | Dangling LIU, Shimin WANG, Zhihui GAO, Lufu XU, Shubiao XIA, Hong GUO. Properties of three-dimensional NZSPO/PAN-[PEO-NATFST] sodium-battery-composite solid electrolyte [J]. Energy Storage Science and Technology, 2021, 10(3): 931-937. |
[12] | Saisai ZHANG, Hailei ZHAO. Electrode/electrolyte interfaces in Li7La3Zr2O12 garnet-based solid-state lithium metal battery: Challenges and progress [J]. Energy Storage Science and Technology, 2021, 10(3): 863-871. |
[13] | Yanming CUI, Zhihua ZHANG, Yuanqiao HUANG, Jiu LIN, Xiayin YAO, Xiaoxiong XU. Prototype all-solid-state battery electrodes preparation and assembly technology [J]. Energy Storage Science and Technology, 2021, 10(3): 836-847. |
[14] | Peng ZHANG, Xingqiang LAI, Junrong SHEN, Donghai ZHANG, Yongheng YAN, Rui ZHANG, Jun SHENG, Kangwei DAI. Research and industrialization progress of solid-state lithium battery [J]. Energy Storage Science and Technology, 2021, 10(3): 896-904. |
[15] | Xi LI, Yajuan YU, Zhiqi ZHANG, Lei WANG, Kai HUANG. Advance and patent analysis of solid electrolyte in solid-state lithium batteries [J]. Energy Storage Science and Technology, 2021, 10(1): 77-86. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||