Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (12): 3770-3779.doi: 10.19799/j.cnki.2095-4239.2023.0531
• Special issue on composite thermal storage • Previous Articles Next Articles
Geng YANG1(), Xin XIAO1,2(
), Yunfeng WANG2
Received:
2023-08-09
Revised:
2023-09-03
Online:
2023-12-05
Published:
2023-12-09
Contact:
Xin XIAO
E-mail:2222186@mail.dhu.edu.cn;xin.xiao@dhu.edu.cn
CLC Number:
Geng YANG, Xin XIAO, Yunfeng WANG. Numerical study of a cascade latent heat energy storage system based on exergy optimization[J]. Energy Storage Science and Technology, 2023, 12(12): 3770-3779.
1 | YAO M C, LI M, WANG Y F, et al. Analysis on characteristics and operation mode of direct solar collector coupled heat pump drying system[J]. Renewable Energy, 2023, 206: 223-238. |
2 | IEA. Heating[R/OL]. https://www.Iea.org/reports/heating. |
3 | IEA. Heat pumps[R/OL]. https://www.iea.org/reports/heat-pumps. |
4 | LI J, ZHANG Y, LI M, et al. Study on heating performance of solar-assisted heat pump drying system under large temperature difference[J]. Solar Energy, 2021, 229: 148-161. |
5 | DU K, CALAUTIT J, WANG Z H, et al. A review of the applications of phase change materials in cooling, heating and power generation in different temperature ranges[J]. Applied Energy, 2018, 220: 242-273. |
6 | 次恩达, 王会, 李晓卿, 等. 六水硝酸镁-硝酸锂共晶盐/膨胀石墨复合相变材料的制备及性能强化[J]. 储能科学与技术, 2022, 11(1): 30-37. |
CI E D, WANG H, LI X Q, et al. Preparation and property enhancement of magnesium nitrate hexahydrate-lithium nitrate eutectic/expanded graphite composite phase change materials[J]. Energy Storage Science and Technology, 2022, 11(1): 30-37. | |
7 | 白金刚, 苑正己, 刘雨, 等. 癸酸-石蜡/石墨烯气凝胶定形相变材料的制备及热物性分析[J]. 化工进展, 2022, 41(8): 4441-4448. |
BAI J G, YUAN Z J, LIU Y, et al. Fabrication and thermal properties of decanoic acid-paraffin/graphene aerogel form-stable phase change materials[J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4441-4448. | |
8 | MOHAMMED H I. Discharge improvement of a phase change material-air-based thermal energy storage unit for space heating applications using metal foams in the air sides[J]. Heat Transfer, 2022, 51(5): 3830-3852. |
9 | GUO S P, ZHAO J, WANG W L, et al. Numerical study of the improvement of an indirect contact mobilized thermal energy storage container[J]. Applied Energy, 2016, 161: 476-486. |
10 | 沈永亮, 张朋威, 刘淑丽. 肋片增强式梯级相变储热系统放热特性的三维数值[J]. 储能科学与技术, 2022, 11(11): 3558-3565. |
SHEN Y L, ZHANG P W, LIU S L. Three-dimensional numerical value of heat release characteristics of stepped phase change heat storage system enhanced by fins[J]. Energy Storage Science and Technology, 2022, 11(11): 3558-3565. | |
11 | LIU F, ZHU W Q, ZHAO J. Model-based dynamic optimal control of a CO2 heat pump coupled with hot and cold thermal storages[J]. Applied Thermal Engineering, 2018, 128: 1116-1125. |
12 | ELBAHJAOUI R, EL QARNIA H. Numerical study of a shell-and-tube latent thermal energy storage unit heated by laminar pulsed fluid flow[J]. Heat Transfer Engineering, 2017, 38(17): 1466-1480. |
13 | FARID M M, KANZAWA A. Thermal performance of a heat storage module using PCM's with different melting temperatures: Mathematical modeling[J]. Journal of Solar Energy Engineering, 1989, 111(2): 152-157. |
14 | SEENIRAJ R V, LAKSHMI NARASIMHAN N. Performance enhancement of a solar dynamic LHTS module having both fins and multiple PCMs[J]. Solar Energy, 2008, 82(6): 535-542. |
15 | XU H J, ZHAO C Y. Thermal efficiency analysis of the cascaded latent heat/cold storage with multi-stage heat engine model[J]. Renewable Energy, 2016, 86: 228-237. |
16 | CHENG X W, ZHAI X Q. Thermal performance analysis and optimization of a cascaded packed bed cool thermal energy storage unit using multiple phase change materials[J]. Applied Energy, 2018, 215: 566-576. |
17 | JIN X, WU F P, XU T, et al. Experimental investigation of the novel melting point modified phase-change material for heat pump latent heat thermal energy storage application[J]. Energy, 2021, 216: 119191. |
18 | KUPPAN T. Heat exchanger design handbook[M]. Oxford: Taylor & Francis Inc, 2020. |
19 | TAY N H S, BELUSKO M, BRUNO F. An effectiveness-NTU technique for characterising tube-in-tank phase change thermal energy storage systems[J]. Applied Energy, 2012, 91(1): 309-319. |
20 | HASHIN Z, SHTRIKMAN S. A variational approach to the theory of the effective magnetic permeability of multiphase materials[J]. Journal of Applied Physics, 1962, 33(10): 3125-3131. |
21 | XIA L, ZHANG P, WANG R Z. Preparation and thermal characterization of expanded graphite/paraffin composite phase change material[J]. Carbon, 2010, 48(9): 2538-2548. |
22 | WOODSIDE W, MESSMER J H. Thermal conductivity of porous media. I. Unconsolidated sands[J]. Journal of Applied Physics, 1961, 32(9): 1688-1699. |
23 | FENG Z, XIAO X. Thermal conductivity measurement of flexible composite phase-change materials based on the steady-state method[J]. Micromachines, 2022, 13(10): 1582. |
24 | XIAO X, ZHANG P, LI M. Thermal characterization of nitrates and nitrates/expanded graphite mixture phase change materials for solar energy storage[J]. Energy Conversion and Management, 2013, 73: 86-94. |
25 | 陶文铨. 传热学(第5版)[M]. 北京: 高等教育出版社, 2019. |
[1] | Fuchao LI, Mingbiao CHEN, Qun DU, Yongzhen CHEN, Wenji SONG, Wenye LIN, Ziping FENG. Research on in-situ remote offshore wind-power consumption based on ice-slurry cold storage [J]. Energy Storage Science and Technology, 2023, 12(12): 3730-3739. |
[2] | Yanyan ZHANG, Yaxuan XIONG, Yahui CHEN, Ruixing QUAN, Guanggui CHENG, Yanqi ZHAO, Yulong DING. Recent progress in the investigation and application of packed-bed latent thermal energy storage systems [J]. Energy Storage Science and Technology, 2023, 12(12): 3852-3872. |
[3] | Hang YIN, Qiang WANG, Jiahua ZHU, Zhirong LIAO, Zinan ZHANG, Ershu XU, Chao XU. Thermodynamic analysis of an advanced adiabatic compressed-air energy storage system coupled with molten salt heat and storage-organic Rankine cycle [J]. Energy Storage Science and Technology, 2023, 12(12): 3749-3760. |
[4] | Qiangqiang XIAO, Jiakang SUN, Hongda TANG, Linhua ZHANG, Nairen DIAO, Hui LI. Preparation and energy-saving effects of disodium hydrogen phosphate dodecahydrate composite phase-change material applied in greenhouse cooling [J]. Energy Storage Science and Technology, 2023, 12(12): 3635-3642. |
[5] | Guochao YIN, Junxiang LIU, Qingbo YU, Haolei WANG. Preparation and properties of composite phase-change materials with sodium acetate trihydrate [J]. Energy Storage Science and Technology, 2023, 12(12): 3643-3654. |
[6] | Jie LIU, Yingying YANG, Aizheng LI, Wensong WANG, Yan REN. Preparation and thermal storage performance study of multivalent hydrated salt composite phase change mortar for floor radiant heating [J]. Energy Storage Science and Technology, 2023, 12(12): 3655-3662. |
[7] | Yanqin GUO, Zhen ZENG, Hongguang ZHANG, Ziye LING, Zhengguo ZHANG, Xiaoming FANG. Investigation of heat transfer enhancement mechanism and performance of phase change materials using expanded graphite in double helical coils [J]. Energy Storage Science and Technology, 2023, 12(12): 3678-3689. |
[8] | Jixiang GE, Mingxi JI, Yulong DING, Yimo LUO, Liming WANG. Parameter optimization of a thermochemical reactor using salt hydrates: A case study of heating application [J]. Energy Storage Science and Technology, 2023, 12(12): 3799-3807. |
[9] | Rong YIN. The application of computer technology in enhancing the energy efficiency of phase change thermal storage [J]. Energy Storage Science and Technology, 2023, 12(12): 3889-3891. |
[10] | Jian CHANG, Hang SONG, Yuzhen KANG, Tao LU, Zhiwei TANG. Application of high-temperature composite phase change heat storage in urban clean energy transformation [J]. Energy Storage Science and Technology, 2023, 12(11): 3471-3478. |
[11] | Kaixuan WANG, Zhitao ZUO, Qi LIANG, Wenbin GUO, Haisheng CHEN. Performance prediction methods for centrifugal compressors: A review [J]. Energy Storage Science and Technology, 2023, 12(11): 3435-3444. |
[12] | Youman ZHAO, Yang HUANG, Li XIONG, Haijun LIN. From material structural feature to the functional feature [J]. Energy Storage Science and Technology, 2023, 12(11): 3287-3298. |
[13] | Wen PAN, Lanning LING, Ruixiong LI, Haiyang WANG, Rui TAO, Peng JIN, Huanran WANG. Thermal-pressure matching law of adiabatic, near-isothermal compressed-air coupled energy-storage process [J]. Energy Storage Science and Technology, 2023, 12(11): 3425-3434. |
[14] | Yuanyuan JIAO, Yifei WANG, Xingjian DAI, Hualiang ZHANG, Haisheng CHEN. Overview of the motor-generator rotor cooling system in a flywheel energy storage system [J]. Energy Storage Science and Technology, 2023, 12(10): 3131-3144. |
[15] | Yu CAO, Tong JIANG, Chi LIU, Yong YANG, Wenfei LIU, Wenying LIU. Electrochemical energy storage participation in primary frequency regulation control strategy considering frequency characteristics and energy storage battery state [J]. Energy Storage Science and Technology, 2023, 12(10): 3120-3130. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||