Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (9): 2904-2916.doi: 10.19799/j.cnki.2095-4239.2023.0342
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Jiangwei SHEN1(), Canbiao ZHOU1, Xing SHU1, Zheng CHEN1(), Yonggang LIU2
Received:
2023-05-16
Revised:
2023-06-07
Online:
2023-09-05
Published:
2023-09-16
Contact:
Zheng CHEN
E-mail:shenjiangwei6@kust.edu.cn;chen@kust.edu.cn
CLC Number:
Jiangwei SHEN, Canbiao ZHOU, Xing SHU, Zheng CHEN, Yonggang LIU. State of charge estimation for lithium batteries based on an improved electrochemical model at a wide temperature environment[J]. Energy Storage Science and Technology, 2023, 12(9): 2904-2916.
Table 4
List of parameters for the IEM"
符号 | 参数 | 负极 | 隔膜 | 正极 |
---|---|---|---|---|
固相扩散系数/( | 5.6448×10-13 | — | 7.4725×10-13 | |
液相扩散系数/( | 4.97×10-9 | 9.19×10-9 | 4.93×10-9 | |
锂离子液相转移数 | 0.363 | |||
液相有效离子电导率/( | 0.104 | 0.224 | 0.104 | |
传递系数 | 0.5 | — | 0.5 | |
固相体积分数 | 0.2718 | — | 0.3886 | |
液相体积分数 | 0.5 | — | 0.55 | |
固相锂离子浓度最大值/( | 16600 | — | 17507 | |
RSEI | 隔膜内阻/( | 0.004 | — | 0.001 |
T | 电池工作温度/K | 298 | ||
F | 法拉第常数/( | 96485 | ||
R | 摩尔气体常数/ | 8.314 | ||
正极开路电压/V | ||||
负极开路电压/V |
1 | 曹铭, 黄菊花, 杨志平, 等. 车用锂离子动力电池自适应状态联合估计研究[J]. 控制理论与应用, 2020, 37(9): 1951-1962. |
CAO M, HUANG J H, YANG Z P, et al. Research on adaptive state of charge and state of power joint estimation algorithm of vehicle lithium ion power batteries[J]. Control Theory & Applications, 2020, 37(9): 1951-1962. | |
2 | 巫春玲, 胡雯博, 孟锦豪, 等. 基于最大相关熵扩展卡尔曼滤波算法的锂离子电池荷电状态估计[J]. 电工技术学报, 2021, 36(24): 5165-5175. |
WU C L, HU W B, MENG J H, et al. State of charge estimation of lithium-ion batteries based on maximum correlation-entropy criterion extended Kalman filtering algorithm[J]. Transactions of China Electrotechnical Society, 2021, 36(24): 5165-5175. | |
3 | 武龙星, 庞辉, 晋佳敏, 等. 基于电化学模型的锂离子电池荷电状态估计方法综述[J]. 电工技术学报, 2022, 37(7): 1703-1725. |
WU L X, PANG H, JIN J M, et al. A review of SOC estimation methods for lithium-ion batteries based on electrochemical model[J]. Transactions of China Electrotechnical Society, 2022, 37(7): 1703-1725. | |
4 | 程泽, 吕继考, 刘继光, 等. 等效滞回模型在锂离子电池SOC估计中的应用[J]. 湖南大学学报(自然科学版), 2015, 42(4): 63-70. |
CHENG Z, LV J K, LIU J G, et al. Application of equivalent hysteresis model in estimaion of state of charge of lithium-ion battery[J]. Journal of Hunan University (Natural Sciences), 2015, 42(4): 63-70. | |
5 | XU Z C, WANG J, LUND P D, et al. Co-estimating the state of charge and health of lithium batteries through combining a minimalist electrochemical model and an equivalent circuit model[J]. Energy, 2022, 240: 122815. |
6 | 罗勇, 祁朋伟, 黄欢, 等. 基于容量修正的安时积分SOC估算方法研究[J]. 汽车工程, 2020, 42(5): 681-687. |
LUO Y, QI P W, HUANG H, et al. Study on battery SOC estimation by ampere-hour integral method with capacity correction[J]. Automotive Engineering, 2020, 42(5): 681-687. | |
7 | HOW D N T, HANNAN M A, HOSSAIN LIPU M S, et al. State of charge estimation for lithium-ion batteries using model-based and data-driven methods: A review[J]. IEEE Access, 2019, 7: 136116-136136. |
8 | 陈清炀, 何映晖, 余官定, 等. 模型与数据双驱动的锂电池状态精准估计[J]. 储能科学与技术, 2023, 12(1): 209-217. |
CHEN Q Y, HE Y H, YU G D, et al. Integrating model-and data-driven methods for accurate state estimation of lithium-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(1): 209-217. | |
9 | LI W H, FAN Y, RINGBECK F, et al. Electrochemical model-based state estimation for lithium-ion batteries with adaptive unscented Kalman filter[J]. Journal of Power Sources, 2020, 476: 228534. |
10 | LAI X, ZHENG Y J, SUN T. A comparative study of different equivalent circuit models for estimating state-of-charge of lithium-ion batteries[J]. Electrochimica Acta, 2018, 259: 566-577. |
11 | CHEN G W, LIU Z T, SU H Y. Capacity estimation of lithium-ion battery based on electrochemical model with electrolyte dynamics[J]. IFAC-PapersOnLine, 2020, 53(2): 5909-5914. |
12 | HARAN B S, POPOV B N, WHITE R E. Determination of the hydrogen diffusion coefficient in metal hydrides by impedance spectroscopy[J]. Journal of Power Sources, 1998, 75(1): 56-63. |
13 | DOYLE M, FULLER T F, NEWMAN J. Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell[J]. Journal of the Electrochemical Society, 1993, 140(6): 1526-1533. |
14 | 邓林旺, 冯天宇, 舒时伟, 等. 锂离子电池快充策略技术研究进展[J]. 储能科学与技术, 2022, 11(9): 2879-2890. |
DENG L W, FENG T Y, SHU S W, et al. Review of a fast-charging strategy and technology for lithium-ion batteries[J]. Energy Storage Science and Technology, 2022, 11(9): 2879-2890. | |
15 | BI Y L, CHOE S Y. An adaptive sigma-point Kalman filter with state equality constraints for online state-of-charge estimation of a Li(NiMnCo)O2/Carbon battery using a reduced-order electrochemical model[J]. Applied Energy, 2020, 258: 113925. |
16 | LIU B Y, TANG X P, GAO F R. Joint estimation of battery state-of-charge and state-of-health based on a simplified pseudo-two-dimensional model[J]. Electrochimica Acta, 2020, 344: 136098. |
17 | FAN G D, LI X Y, ZHANG R G. Global sensitivity analysis on temperature-dependent parameters of A reduced-order electrochemical model and robust state-of-charge estimation at different temperatures[J]. Energy, 2021, 223: 120024. |
18 | 王乾松. 基于电化学的改进等效电路模型的SOC估算[J]. 机电信息, 2022(7): 28-32. |
WANG Q S. SOC estimation of improved equivalent circuit model based on electrochemistry[J]. Mechanical and Electrical Information, 2022(7): 28-32. | |
19 | ZHANG X, LU J L, YUAN S F, et al. A novel method for identification of lithium-ion battery equivalent circuit model parameters considering electrochemical properties[J]. Journal of Power Sources, 2017, 345: 21-29. |
20 | FENG S, LI X G, ZHANG S A, et al. A review: State estimation based on hybrid models of Kalman filter and neural network[J]. Systems Science & Control Engineering, 2023, 11(1): 2173682. |
21 | WANG L, MA J, ZHAO X, et al. Adaptive robust unscented Kalman filter-based state-of-charge estimation for lithium-ion batteries with multi-parameter updating[J]. Electrochimica Acta, 2022, 426: 140760. |
22 | FU S Y, LIU W, LUO W L, et al. State of charge estimation of lithium-ion phosphate battery based on weighted multi-innovation cubature Kalman filter[J]. Journal of Energy Storage, 2022, 50: 104175. |
23 | JIANG C, WANG S L, WU B, et al. A state-of-charge estimation method of the power lithium-ion battery in complex conditions based on adaptive square root extended Kalman filter[J]. Energy, 2021, 219: 119603. |
24 | LIU K L, GAO Y Z, ZHU C, et al. Electrochemical modeling and parameterization towards control-oriented management of lithium-ion batteries[J]. Control Engineering Practice, 2022, 124: 105176. |
25 | BERRUETA A, URTASUN A, URSÚA A, et al. A comprehensive model for lithium-ion batteries: From the physical principles to an electrical model[J]. Energy, 2018, 144: 286-300. |
26 | LI Y J, LI K N, XIE Y, et al. Optimized charging of lithium-ion battery for electric vehicles: Adaptive multistage constant current-constant voltage charging strategy[J]. Renewable Energy, 2020, 146: 2688-2699. |
27 | ZHENG F D, XING Y J, JIANG J C, et al. Influence of different open circuit voltage tests on state of charge online estimation for lithium-ion batteries[J]. Applied Energy, 2016, 183: 513-525. |
28 | CHEN L, XU R Y, RAO W N, et al. Electrochemical model parameter identification of lithium-ion battery with temperature and current dependence[J]. International Journal of Electrochemical Science, 2019, 14(5): 4124-4143. |
29 | SHEN J W, MA W S, XIONG J, et al. Alternative combined co-estimation of state of charge and capacity for lithium-ion batteries in wide temperature scope[J]. Energy, 2022, 244: 123236. |
[1] | Yue LI, Bo WANG, Nan WU. Preparation and lithium storage performance of graphene/Si/SiO x nanocomposites [J]. Energy Storage Science and Technology, 2023, 12(9): 2752-2759. |
[2] | Man CHEN, Zhixiang CHENG, Chunpeng ZHAO, Peng PENG, Qikai LEI, Kaiqiang JIN, Qingsong WANG. Numerical simulation study on explosion hazards of lithium-ion battery energy storage containers [J]. Energy Storage Science and Technology, 2023, 12(8): 2594-2605. |
[3] | Honghui WANG, Yifan LIU, Deren CHU. Calendar aging of lithium titanate battery with different state of charge [J]. Energy Storage Science and Technology, 2023, 12(8): 2606-2614. |
[4] | Yuxin CHEN, Jiamu YANG, Cheng LIAN, Honglai LIU. Analysis of stable coating window of lithium battery electrode paste based on phase field models [J]. Energy Storage Science and Technology, 2023, 12(7): 2185-2193. |
[5] | Zenghui HAO, Xunliang LIU, Yuan MENG, Nan MENG, Zhi WEN. Effect of electrode interface microstructure on the performance of solid-state lithium-ion battery [J]. Energy Storage Science and Technology, 2023, 12(7): 2095-2104. |
[6] | Wenda ZAN, Rui ZHANG, Fei DING. Development and application of electrochemical models for lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(7): 2302-2318. |
[7] | Yikun WU, Jie HE, Le YANG, Weili SONG, Haosen CHEN. Multiscale and multiphysics theoretical model and computational method for lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(7): 2141-2154. |
[8] | Hongsheng GUAN, Cheng QIAN, Binghui XU, Bo SUN, Yi REN. SAM-GRU-based fusion neural network for SOC estimation in lithium-ion batteries under a wide range of operating conditions [J]. Energy Storage Science and Technology, 2023, 12(7): 2229-2237. |
[9] | Birong TAN, Jianhua DU, Xianghu YE, Xin CAO, Chang QU. Overview of SOC estimation methods for lithium-ion batteries based on model [J]. Energy Storage Science and Technology, 2023, 12(6): 1995-2010. |
[10] | Jialiang LIU, Cuijing GUO, Huanling WANG. Safety detection and verification of energy storage in lithium-ion battery based on fire fault tree model [J]. Energy Storage Science and Technology, 2023, 12(5): 1695-1704. |
[11] | Xinyu LI, Xuebing HAN, Languang LU, Jianqiu LI, Minggao OUYANG. Optimization of an impedance model for power Li-ion batteries based on a large multiplier current pulse [J]. Energy Storage Science and Technology, 2023, 12(5): 1686-1694. |
[12] | Minyuan GUAN, Jianliang SHEN, Guohua XU, Shun TANG, Weixin ZHANG, Yuancheng CAO. Design and performance research of targeted-fire fighting equipment for lithium-ion battery energy storage system [J]. Energy Storage Science and Technology, 2023, 12(4): 1131-1138. |
[13] | Feng LIU, Haizhong CHEN. Lithium-ion battery state prediction based on CEEMDAN and ISOA-ELM [J]. Energy Storage Science and Technology, 2023, 12(4): 1244-1256. |
[14] | Hongxin WU, Aikui LI, Cun DONG, Shumin SUN, Guanglei LI, Shibo WANG. Control strategy for wind power fluctuation stabilization with energy storage and frequency modulation reserve [J]. Energy Storage Science and Technology, 2023, 12(4): 1194-1203. |
[15] | Liyu ZHAO, Huanwu SUN, Shichuang LIU, Zhiyuan YAN. Energy consumption comparison and optimization of auxiliary power-battery heating system of heavy truck [J]. Energy Storage Science and Technology, 2023, 12(4): 1139-1147. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||