Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (9): 2888-2903.doi: 10.19799/j.cnki.2095-4239.2023.0269
• Energy Storage System and Engineering • Previous Articles Next Articles
Shaohong ZENG1(), Weixiong WU1(), Jizhen LIU1, Shuangfeng WANG2, Shifeng YE3, Zhenyu FENG3
Received:
2023-04-25
Revised:
2023-05-16
Online:
2023-09-05
Published:
2023-09-16
Contact:
Weixiong WU
E-mail:1042446057@qq.com;weixiongwu@jnu.edu.cn
CLC Number:
Shaohong ZENG, Weixiong WU, Jizhen LIU, Shuangfeng WANG, Shifeng YE, Zhenyu FENG. A review of research on immersion cooling technology for lithium-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(9): 2888-2903.
Table 1
Physical parameters of immersion coolant"
种类 | 材料 | 商家来源 | 20 ℃时运动黏度/cSt① | 20 ℃时密度/(kg/m3) | 导热系数/(W/m·k) | 比热容/(J/kg·K) | 介电常数 |
---|---|---|---|---|---|---|---|
电子氟化液 | Novec649[ | 美国3M | 0.40 | 1600 | 0.059 | 1103 | 1.8 |
Novec7000[ | 美国3M | 0.32 | 1400 | 0.075 | 1300 | 7.4 | |
Novec7100[ 同HFE-7100 | 美国3M | 0.27 | 1370.2 | 0.062 | 1255 | 7.39 | |
FC-72[ | 美国3M | 0.38 | 1680 | 0.057 | 1100 | 1.75 | |
SF33[ | 美国chemours | 0.30 | 1383.5 | 0.077 | 1200 | 32 | |
HFE-6512[ | 浙江辉凯鼎瑞 | 1.18 | 1600 | 0.23[ | 1170 | 5.8 | |
碳氢化合物 | 矿物油 | 56[ | 924.1[ | 0.13[ | 1900[ | 2.1[ | |
E5 TM 410[ | 荷兰壳牌 | 19.4 | 810 | 0.14 | 2100 | ||
AmpCool AC-110[ | 美国ENGINEERED FLUIDS | 8.11 (40 ℃) | 820 | 0.1403 (40 ℃) | 2212.1 (40 ℃) | 2.08 | |
酯类 | MIVOLT-DF7[ | 英国M&I Materials | 16.4 | 916 | 0.129 | 1907 | |
MIVOLT-DFK[ | 英国M&I Materials | 75 | 968 | 0.147 | 1902 | ||
硅油类 | 硅油[ | 美国super lube | 100 | 965 | 0.16 | 1460 | 16 |
二甲基硅油 | 1500[ | 968[ | 0.16[ | 1630[ | 2.18[ | ||
乙基硅油 | 50[ | 970[ | 0.159[ | 1810[ | |||
水基流体 | 去离子水[ | 1 | 998 | 0.5984 | 4182 | 80.2 | |
水乙二醇溶液50% | 4.5[ | 1082[ | 0.402[ | 3260[ | 64.92[ | ||
氧化铝纳米流体0.4%[ | 0.93 (30 ℃) | 1007 (30 ℃) | 0.6349 (30 ℃) | 4124 (30 ℃) |
Table 1
(continued) Physical parameters of immersion coolant"
种类 | 材料 | 凝固点(倾点)/℃ | 沸点/℃ | 汽化潜热/(kJ/kg) | 闪点/℃ | 安全性 | 环保性 |
---|---|---|---|---|---|---|---|
电子氟化液 | Novec649[ | -108 | 49 | 88 | ODP=0 GWP=1 | ||
Novec7000[ | -122 | 34 | 142 | 无 | 不易燃 | ODP=0 GWP=530 | |
Novec7100[ 同HFE-7100 | -135 | 61 | 111.6 | 无 | ODP=0 GWP=320 | ||
FC-72[ | -90 | 56 | 88 | 无 | ODP=0 高GWP | ||
SF33[ | -107 | 33.4 | 166 | 无 | ODP=0 GWP=2 | ||
HFE-6512[ | -120 | 135 | 无 | 不燃 | ODP=0 GWP=1 | ||
碳氢化合物 | 矿物油 | >218[ | >115[ | 易燃[ | |||
E5 TM 410[ | 190 | 易燃 | |||||
AmpCool AC-110[ | -57 | 193 | 易燃 | GWP=0 | |||
酯类 | MIVOLT-DF7[ | -75 | 194 | ODP=0 GWP<1 | |||
MIVOLT-DFK[ | <-50 | >250 | ODP=0 GWP<1 | ||||
硅油类 | 硅油[ | -55 | >300 | ||||
二甲基硅油 | <-50[ | >155[ | |||||
乙基硅油 | <-40[ | >205[ | 80[ | ||||
水基流体 | 去离子水[ | 0 | 100 | 2257 | 无 | ||
水乙二醇溶液50% | -36.8[ | 107.2[ | |||||
氧化铝纳米流体0.4%[ |
Table 3
Summary of experimental research on immersion thermal runaway"
参考 | 介电流体 | 电池类型 | 研究方法 | 热失控触发 | 实验结果 |
---|---|---|---|---|---|
Li[ | HFO-1336、BTP、F7A、C6F-ketone、HFE-7100 | 圆柱电池 | 实验 | 热滥用-加热 | 五种冷却液浸没的电池最高温度均远低于热失控温度,未出现热失控 |
Patil[ | 矿物油 | 软包模组 | 仿真 | 热滥用-内部短路 | 只有触发电池发生热失控,其他电池无影响 |
Zhao[ | E5 TM 410 | 方形模组 | 实验 | 热滥用-加热 | 浸没式实验中无明火发生,符合中国法规要求 |
Wu[ | 二甲基硅油 | 圆柱模组 | 实验 | 热滥用-加热 | 浸没式没有发生热失控传播,间接冷却式有发生热失控传播的风险 |
Zhou[ | Novec 649 | 软包模组 | 实验 | 电滥用-过充 | 相变液体抑制了故障电池的热失控,并阻止了热失控传播 |
李[ | 水-乙二醇阻燃液压油、变压器油 | 圆柱电池 | 实验 | 热滥用-加热 | 大气环境、浸没环境下,不同电极材料锂电池的热失控特性 |
1 | RAHMAN M M, ONI A O, GEMECHU E, et al. Assessment of energy storage technologies: A review[J]. Energy Conversion and Management, 2020, 223: 113295. |
2 | WU W X, WANG S F, WU W, et al. A critical review of battery thermal performance and liquid based battery thermal management[J]. Energy Conversion and Management, 2019, 182: 262-281. |
3 | MA S, JIANG M D, TAO P, et al. Temperature effect and thermal impact in lithium-ion batteries: A review[J]. Progress in Natural Science: Materials International, 2018, 28(6): 653-666. |
4 | KIM J, OH J, LEE H. Review on battery thermal management system for electric vehicles[J]. Applied Thermal Engineering, 2019, 149: 192-212. |
5 | WANG Z C, DU C Q. A comprehensive review on thermal management systems for power lithium-ion batteries[J]. Renewable and Sustainable Energy Reviews, 2021, 139: 110685. |
6 | YANG W, ZHOU F, ZHOU H B, et al. Thermal performance of cylindrical lithium-ion battery thermal management system integrated with mini-channel liquid cooling and air cooling[J]. Applied Thermal Engineering, 2020, 175: 115331. |
7 | SURESH PATIL M, SEO J H, LEE M Y. A novel dielectric fluid immersion cooling technology for Li-ion battery thermal management[J]. Energy Conversion and Management, 2021, 229: 113715. |
8 | TAN X J, LYU P X, FAN Y Q, et al. Numerical investigation of the direct liquid cooling of a fast-charging lithium-ion battery pack in hydrofluoroether[J]. Applied Thermal Engineering, 2021, 196: 117279. |
9 | LE Q, SHI Q L, LIU Q, et al. Numerical investigation on manifold immersion cooling scheme for lithium ion battery thermal management application[J]. International Journal of Heat and Mass Transfer, 2022, 190: 122750. |
10 | 3M Electronics Markets Materials Division. 3MTM NovecTM 649 engineered fluid[EB/OL]. [2023-04-20]. https://multimedia.3m.com/mws/media/569865O/3m-novec-engineered-fluid-649.pdf. |
11 | 3M Electronics Markets Materials Division. 3MTM NovecTM 7000 engineered fluid[EB/OL]. [2023-04-20]. https://multimedia.3m.com/mws/media/121372O/3m-novec-7000-engineered-fluid-tds.pdf. |
12 | EL-GENK M S, BOSTANCI H. Saturation boiling of HFE-7100 from a copper surface, simulating a microelectronic chip[J]. International Journal of Heat and Mass Transfer, 2003, 46(10): 1841-1854. |
13 | 3M Electronics Markets Materials Division. 3MTM FluorinertTM electronic liquid FC-72[EB/OL]. [2023-04-20]. https://multimedia.3m.com/mws/media/64892O/3m-fluorinert-electronic-liquid-fc72-en.pdf. |
14 | The Chemours Company FC, LLC. OpteonTM SF33 specialty fluid technical information[EB/OL]. [2023-04-20]. https://www.opteon.com/en/-/media/files/opteon/opteon-sf33-specialty-fluid-technical-bulletin.pdf?rev=67b973acd80745ea841f750921f743f5. |
15 | Zhejiang Huikai Dingrui Advanced Materials Co.,Ltd. Electronic fluorinated fluid HEF-6512[EB/OL]. [2023-04-20]. https://www.wellwinchem.com/dzcpyfhlqy#md. |
16 | KIM G H, PESARAN A. Battery thermal management design modeling[J]. World Electric Vehicle Journal, 2007, 1(1): 126-133. |
17 | KABUSA. Dielectric constants of common materials[EB/OL]. [2023-04-20]. http://www.kabusa.com/Dilectric-Constants.pdf. |
18 | ROE C, FENG X N, WHITE G, et al. Immersion cooling for lithium-ion batteries-A review[J]. Journal of Power Sources, 2022, 525: 231094. |
19 | Engineered Fluids. AmpCool dielectric coolant[EB/OL]. [2023-04-20]. https://www.engineeredfluids.com/ampcool. |
20 | M&I materials Ltd. MIVOLT DF7 dielectric liquid technical brochure[EB/OL]. [2023-08-07]. https://www.mivolt.com/wp-content/uploads/2021/10/MIVOLT-DF7-Brochure_Mar23.pdf. |
21 | M&I materials Ltd. MIVOLT DFK dielectric liquid technical brochure[EB/OL]. [2023-08-07]. https://www.mivolt.com/wp-content/uploads/2021/10/MIVOLT-DFK-Brochure_Mar23.pdf. |
22 | Synco Chemical Corporation. Technical data sheet super lubec silicone oil[EB/OL]. [2023-04-20]. https://www.super-lube.com/Content/Images/uploaded/documents/TDS/Technical_Data_Sheet_Silicone_Oil.pdf. |
23 | ZHOU Y X, WANG Z K, XIE Z F, et al. Parametric investigation on the performance of a battery thermal management system with immersion cooling[J]. Energies, 2022, 15(7): 2554. |
24 | Chemicalbook. Dimethicone, CAS#: 9006-65-9[EB/OL]. [2023-04-20]. https://www.chemicalbook.com/ProductChemicalPropertiesCB0696472.htm. |
25 | 朱小龙. 动力电池热管理系统温控性能实验与数值模拟研究[D]. 南京: 南京航空航天大学, 2018. |
ZHU X L. Experimental and numerical investigation on temperature control performance of the thermal management system for power batteries[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018. | |
26 | Matweb. Water, H2O[EB/OL]. [2023-04-20]. https://www.matweb.com/search/DataSheet.aspx?MatGUID=64a0e072a9ec430e92ed984c7131b690&ckck=1. |
27 | EN/CV Detector Cooling Section. Properties of mixture water/glycol[EB/OL]. [2023-04-20]. https://detector-cooling.web.cern.ch/data/Table%208-3-1.htm. |
28 | ZAHN M, OHKI Y, FENNEMAN D B, et al. Dielectric properties of water and water/ethylene glycol mixtures for use in pulsed power system design[J]. Proceedings of the IEEE, 1986, 74(9): 1182-1221. |
29 | JILTE R D, KUMAR R, AHMADI M H. Cooling performance of nanofluid submerged vs. nanofluid circulated battery thermal management systems[J]. Journal of Cleaner Production, 2019, 240: 118131. |
30 | INCHEM. White mineral oil[EB/OL]. [2023-04-20]. https://inchem.org/documents/icsc/icsc/eics1597.htm. |
31 | Chemicalbook. Polydiethylsiloxane, CAS#: 63148-61-8[EB/OL]. [2023-04-20]. https://www.chemicalbook.com/ProductChemicalPropertiesCB1386671.htm. |
32 | The Engineering ToolBox. Ethylene glycol heat-transfer fluid properties[EB/OL]. [2023-04-20]. https://www.engineeringtoolbox.com/ethylene-glycol-d_146.html. |
33 | TSAI W T. Environmental risk assessment of hydrofluoroethers (HFEs)[J]. Journal of Hazardous Materials, 2005, 119(1/2/3): 69-78. |
34 | TUMA P E. The merits of open bath immersion cooling of datacom equipment[C]//2010 26th Annual IEEE Semiconductor Thermal Measurement and Management Symposium (SEMI-THERM). February 21-25, 2010, Santa Clara, CA, USA. IEEE, 2010: 123-131. |
35 | EL-GENK M S. Immersion cooling nucleate boiling of high power computer chips[J]. Energy Conversion and Management, 2012, 53(1): 205-218. |
36 | LI X T, ZHOU Z Y, ZHANG M J, et al. A liquid cooling technology based on fluorocarbons for lithium-ion battery thermal safety[J]. Journal of Loss Prevention in the Process Industries, 2022, 78: 104818. |
37 | VAN GILS R W, DANILOV D, NOTTEN P H L, et al. Battery thermal management by boiling heat-transfer[J]. Energy Conversion and Management, 2014, 79: 9-17. |
38 | KOSTER D, MARONGIU A, CHAHARDAHCHERIK D, et al. Degradation analysis of 18650 cylindrical cell battery pack with immersion liquid cooling system. Part 1: Aging assessment at pack level[J]. Journal of Energy Storage, 2023, 62: 106839. |
39 | EBERHARDT R, MUHR H M, LICK W, et al. Partial discharge behaviour of an alternative insulating liquid compared to mineral oil[C]//2010 IEEE International Symposium on Electrical Insulation. June 6-9, 2010, San Diego, CA, USA. IEEE, 2010: 1-4. |
40 | SAMIKANNU R, ANTONY RAJ R, MURUGESAN S, et al. Assessing the dielectric performance of Sclerocarya birrea (Marula oil) and mineral oil for eco-friendly power transformer applications[J]. Alexandria Engineering Journal, 2022, 61(1): 355-366. |
41 | WANG H T, TAO T, XU J, et al. Thermal performance of a liquid-immersed battery thermal management system for lithium-ion pouch batteries[J]. Journal of Energy Storage, 2022, 46: 103835. |
42 | SITORUS H B H, BEROUAL A, SETIABUDY R, et al. Comparison of streamers characteristics in jatropha curcas methyl ester oil and mineral oil under lightning impulse voltage[C]//2014 IEEE 18th International Conference on Dielectric Liquids (ICDL). June 29-July 3, 2014, Bled, Slovenia. IEEE, 2014: 1-4. |
43 | OOMMEN T V. Vegetable oils for liquid-filled transformers[J]. IEEE Electrical Insulation Magazine, 2002, 18(1): 6-11. |
44 | CONG H X, PAN H, QIAN D Y, et al. Reviews on sulphur corrosion phenomenon of the oil-paper insulating system in mineral oil transformer[J]. High Voltage, 2021, 6(2): 193-209. |
45 | SUNDIN D W, SPONHOLTZ S. Thermal management of Li-ion batteries with single-phase liquid immersion cooling[J]. IEEE Open Journal of Vehicular Technology, 2020, 1: 82-92. |
46 | Shell Global. Electric vehicle fluids: Lubricating the future of mobility[EB/OL]. [2023-04-20]. https://www.shell.com/business-customers/lubricants-for-business/products/shell-efluids.html. |
47 | WOOD D A, NWAOHA C, TOWLER B F. Gas-to-liquids (GTL): A review of an industry offering several routes for monetizing natural gas[J]. Journal of Natural Gas Science and Engineering, 2012, 9: 196-208. |
48 | ROZGA P, BEROUAL A, PRZYBYLEK P, et al. A review on synthetic ester liquids for transformer applications[J]. Energies, 2020, 13(23): 6429. |
49 | BANDARA K, EKANAYAKE C, SAHA T K. Compare the performance of natural ester with synthetic ester as transformer insulating oil[C]//2015 IEEE 11th International Conference on the Properties and Applications of Dielectric Materials (ICPADM). July 19-22, 2015, Sydney, NSW, Australia. IEEE, 2015: 975-978. |
50 | ORTIZ A, DELGADO F, ORTIZ F, et al. The aging impact on the cooling capacity of a natural ester used in power transformers[J]. Applied Thermal Engineering, 2018, 144: 797-803. |
51 | AZIZ T, FAN H, KHAN F U, et al. Modified silicone oil types, mechanical properties and applications[J]. Polymer Bulletin, 2019, 76(4): 2129-2145. |
52 | BARCA F, CAPOROSSI T, RIZZO S. Silicone oil: Different physical proprieties and clinical applications[J]. BioMed Research International, 2014, 2014: 1-7. |
53 | DENG Y W, FENG C L, JIAQIANG E, et al. Effects of different coolants and cooling strategies on the cooling performance of the power lithium ion battery system: A review[J]. Applied Thermal Engineering, 2018, 142: 10-29. |
54 | YOUNES H, MAO M Y, SOHEL MURSHED S M, et al. Nanofluids: Key parameters to enhance thermal conductivity and its applications[J]. Applied Thermal Engineering, 2022, 207: 118202. |
55 | ZAKARIA I, AZMI W H, MOHAMED W A N W, et al. Experimental investigation of thermal conductivity and electrical conductivity of Al2O3 nanofluid in water-ethylene glycol mixture for proton exchange membrane fuel cell application[J]. International Communications in Heat and Mass Transfer, 2015, 61: 61-68. |
56 | BIRBARAH P, GEBRAEL T, FOULKES T, et al. Water immersion cooling of high power density electronics[J]. International Journal of Heat and Mass Transfer, 2020, 147: 118918. |
57 | LI X X, HUANG Q Q, DENG J, et al. Evaluation of lithium battery thermal management using sealant made of boron nitride and silicone[J]. Journal of Power Sources, 2020, 451: 227820. |
58 | LUO M Y, CAO J H, LIU N H, et al. Experimental and simulative investigations on a water immersion cooling system for cylindrical battery cells[J]. Frontiers in Energy Research, 2022, 10: 803882. |
59 | Specialty Coating Systems, Inc. SCS parylene properties[EB/OL]. [2023-04-20]. https://rsc.aux.eng.ufl.edu/_files/documents/176.pdf. |
60 | BUROW D, SERGEEVA K, CALLES S, et al. Inhomogeneous degradation of graphite anodes in automotive lithium ion batteries under low-temperature pulse cycling conditions[J]. Journal of Power Sources, 2016, 307: 806-814. |
61 | NAGASUBRAMANIAN G. Electrical characteristics of 18650 Li-ion cells at low temperatures[J]. Journal of Applied Electrochemistry, 2001, 31(1): 99-104. |
62 | JAGUEMONT J, BOULON L, VENET P, et al. Low temperature aging tests for lithium-ion batteries[C]//2015 IEEE 24th International Symposium on Industrial Electronics (ISIE). June 3-5, 2015, Buzios, Brazil. IEEE, 2015: 1284-1289. |
63 | PIAO N, GAO X N, YANG H C, et al. Challenges and development of lithium-ion batteries for low temperature environments[J]. eTransportation, 2022, 11: 100145. |
64 | LIN H P, CHUA D, SALOMON M, et al. Low-temperature behavior of Li-ion cells[J]. Electrochemical and Solid-State Letters, 2001, 4(6): A71. |
65 | OUYANG M G, CHU Z Y, LU L G, et al. Low temperature aging mechanism identification and lithium deposition in a large format lithium iron phosphate battery for different charge profiles[J]. Journal of Power Sources, 2015, 286: 309-320. |
66 | WANG Y J, ZHANG X C, CHEN Z H. Low temperature preheating techniques for Lithium-ion batteries: Recent advances and future challenges[J]. Applied Energy, 2022, 313: 118832. |
67 | WANG Y B, RAO Z, LIU S C, et al. Evaluating the performance of liquid immersing preheating system for Lithium-ion battery pack[J]. Applied Thermal Engineering, 2021, 190: 116811. |
68 | 郎春艳. 低温环境下锂离子电池组热管理系统研究[D]. 广州: 华南理工大学, 2016. |
LANG C Y. A study on the performance of lithium-ion battery pack thermal management system in case of low-temperature[D]. Guangzhou: South China University of Technology, 2016. | |
69 | 颜艺. 基于液体直接接触式电动汽车电池热管理系统研究与设计[D]. 广州: 华南理工大学, 2019. |
YAN Y. Research and design of battery thermal management system for electric vehicle based on liquid direct contact[D]. Guangzhou: South China University of Technology, 2019. | |
70 | 鲁南, 王海民, 王传伟, 等. 绝缘油浸没预热NCM811动力电池的热特性及放电参数改善[J]. 化工进展, 2023, 42(3): 1299-1307. |
LU N, WANG H M, WANG C W, et al. Thermal characteristics and improved discharge parameters of NCM811 traction battery immersed preheated by insulating oil[J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1299-1307. | |
71 | 裴波, 王磊, 杨栋梁, 等. 基于浸没式液冷冷却的锂电池热管理系统数值计算研究[J]. 船电技术, 2020, 40(11): 1-5. |
PEI B, WANG L, YANG D L, et al. Numerical simulation of thermal management system of lithium battery based on immersion liquid cooling[J]. Marine Electric & Electronic Engineering, 2020, 40(11): 1-5. | |
72 | BANDHAUER T M, GARIMELLA S, FULLER T F. A critical review of thermal issues in lithium-ion batteries[J]. Journal of the Electrochemical Society, 2011, 158(3): R1. |
73 | LIU W, WANG M, GAO X L, et al. Improvement of the high-temperature, high-voltage cycling performance of LiNi0.5Co0.2Mn0.3O2 cathode with TiO2 coating[J]. Journal of Alloys and Compounds, 2012, 543: 181-188. |
74 | THOMAS E V, CASE H L, DOUGHTY D H, et al. Accelerated power degradation of Li-ion cells[J]. Journal of Power Sources, 2003, 124(1): 254-260. |
75 | WANG Q S, PING P, ZHAO X J, et al. Thermal runaway caused fire and explosion of lithium ion battery[J]. Journal of Power Sources, 2012, 208: 210-224. |
76 | DUBEY P, PULUGUNDLA G, SROUJI A K. Direct comparison of immersion and cold-plate based cooling for automotive Li-ion battery modules[J]. Energies, 2021, 14(5): 1259. |
77 | WU S Q, LAO L, WU L, et al. Effect analysis on integration efficiency and safety performance of a battery thermal management system based on direct contact liquid cooling[J]. Applied Thermal Engineering, 2022, 201: 117788. |
78 | JITHIN K V, RAJESH P K. Numerical analysis of single-phase liquid immersion cooling for lithium-ion battery thermal management using different dielectric fluids[J]. International Journal of Heat and Mass Transfer, 2022, 188: 122608. |
79 | SATYANARAYANA G, RUBEN SUDHAKAR D, MUTHYA GOUD V, et al. Experimental investigation and comparative analysis of immersion cooling of lithium-ion batteries using mineral and therminol oil[J]. Applied Thermal Engineering, 2023, 225: 120187. |
80 | LARRAÑAGA-EZEIZA M, VERTIZ G, ARROIABE P F, et al. A novel direct liquid cooling strategy for electric vehicles focused on pouch type battery cells[J]. Applied Thermal Engineering, 2022, 216: 118869. |
81 | WANG Z P, ZHAO R J, WANG S Z, et al. Heat transfer characteristics and influencing factors of immersion coupled direct cooling for battery thermal management[J]. Journal of Energy Storage, 2023, 62: 106821. |
82 | LIU J H, FAN Y N, XIE Q M. Feasibility study of a novel oil-immersed battery cooling system: Experiments and theoretical analysis[J]. Applied Thermal Engineering, 2022, 208: 118251. |
83 | LIU J H, FAN Y N, WANG J H, et al. A model-scale experimental and theoretical study on a mineral oil-immersed battery cooling system[J]. Renewable Energy, 2022, 201: 712-723. |
84 | LI Y, ZHOU Z F, HU L M, et al. Experimental studies of liquid immersion cooling for 18650 lithium-ion battery under different discharging conditions[J]. Case Studies in Thermal Engineering, 2022, 34: 102034. |
85 | LI Y, BAI M L, ZHOU Z F, et al. Experimental study of liquid immersion cooling for different cylindrical lithium-ion batteries under rapid charging conditions[J]. Thermal Science and Engineering Progress, 2023, 37: 101569. |
86 | HIRANO H, TAJIMA T, HASEGAWA T, et al. Boiling liquid battery cooling for electric vehicle[C]//2014 IEEE Conference and Expo Transportation Electrification Asia-Pacific (ITEC Asia-Pacific). August 31-September 3, 2014, Beijing, China. IEEE, 2014: 1-4. |
87 | WU N, YE X L, YAO J X, et al. Efficient thermal management of the large-format pouch lithium-ion cell via the boiling-cooling system operated with intermittent flow[J]. International Journal of Heat and Mass Transfer, 2021, 170: 121018. |
88 | WANG Y F, WU J T. Thermal performance predictions for an HFE-7000 direct flow boiling cooled battery thermal management system for electric vehicles[J]. Energy Conversion and Management, 2020, 207: 112569. |
89 | PAREKH J, RZEHAK R. Euler-Euler multiphase CFD-simulation with full Reynolds stress model and anisotropic bubble-induced turbulence[J]. International Journal of Multiphase Flow, 2018, 99: 231-245. |
90 | AL-ZAREER M, DINCER I, ROSEN M A. Development and evaluation of a new ammonia boiling based battery thermal management system[J]. Electrochimica Acta, 2018, 280: 340-352. |
91 | AL-ZAREER M, DINCER I, ROSEN M A. A novel approach for performance improvement of liquid to vapor based battery cooling systems[J]. Energy Conversion and Management, 2019, 187: 191-204. |
92 | AL-ZAREER M, DINCER I, ROSEN M A. Heat and mass transfer modeling and assessment of a new battery cooling system[J]. International Journal of Heat and Mass Transfer, 2018, 126: 765-778. |
93 | 马瑞鑫, 刘吉臻, 汪双凤, 等. 锂离子电池热失控扩展特征及抑制策略研究进展[J]. 科学通报, 2021, 66(23): 2991-3004. |
MA R X, LIU J Z, WANG S F, et al. Progress on thermal runaway propagation characteristics and prevention strategies of lithium-ion batteries[J]. Chinese Science Bulletin, 2021, 66(23): 2991-3004. | |
94 | ZHAO Q L, ZHANG Q S, LIU H T, et al. Comparative study on simulation and experiment of immersion and traditional indirect cooling battery pack[J]. SSRN Electronic Journal, 2022: doi: 10.2139/ssrn.4145632. |
95 | ZHOU H K, DAI C H, LIU Y, et al. Experimental investigation of battery thermal management and safety with heat pipe and immersion phase change liquid[J]. Journal of Power Sources, 2020, 473: 228545. |
96 | 李雨泽. 浸没方式下液体抑制锂电池热失控技术研究[D]. 广汉: 中国民用航空飞行学院, 2022. |
LI Y Z. Research on thermal runaway control technology of lithium battery suppressed by liquid under immersion method[D]. Guanhan: Civil Aviation Flight University of China, 2022. | |
97 | HELLEBUYCK D H, HEES P, MAGNUSSON T, et al. Fire behaviour of less-combustible dielectric liquids in a nuclear facility[J]. Fire Technology, 2016, 52(2): 289-308. |
98 | LANDER L, KALLITSIS E, HALES A, et al. Cost and carbon footprint reduction of electric vehicle lithium-ion batteries through efficient thermal management[J]. Applied Energy, 2021, 289: 116737. |
99 | Xing Mobility. IMMERSIOTM XM25[EB/OL]. [2023-04-20]. https://www.xingmobility.com/en/products/856d7055a67A. |
100 | Exose. Battery immersion cooling: The next revolution[EB/OL]. [2023-04-20]. https://exoes.com/en/achievements/battery-immersion-cooling/. |
101 | TotalEnergies international group. TotalEnergies makes history by incorporating an immersion-cooled battery into a road-going vehicle[EB/OL]. [2023-04-20]. https://lubricants.totalenergies.com/news-press-releases/totalenergies-makes-history-incorporating-immersion-cooled-battery-road-going. |
102 | Mclaren. McLaren speedtail[EB/OL]. [2023-04-20]. https://www.mclarencars.cn/cn-zh/ultimate-series/mclaren-speedtail. |
103 | China Southern Power Grid Energy Storage Co., Ltd. The world's first submerged liquid-cooled energy storage power station officially put into operation[EB/OL]. [2023-04-20]. http://mp.weixin.qq.com/s?__biz=Mzg2MTg2MDYwMg==&mid=2247502467&idx=1&sn=399c130585690daa00e31db45907b86b&chksm=ce122d16f965a400430bc26f357d38818ee2c48f1baf2968c048a47d50c45623ad65a1087e82#rd. |
[1] | Xin CHEN, Yunwu LI, Xincheng LIANG, Falin LI, Zhidong ZHANG. Battery health state estimation of combined Transformer-GRU based on modal decomposition [J]. Energy Storage Science and Technology, 2023, 12(9): 2927-2936. |
[2] | Jiwei LI, Ruihan LIU, Taolin LU, Long PAN, Changjun MA, Qingbo LI, Zhiyun ZHAO, Wen YANG, Jingying XIE. Early fault diagnosis of lithium-ion battery packs based on improved local outlier detection and standard deviation method [J]. Energy Storage Science and Technology, 2023, 12(9): 2917-2926. |
[3] | Xiangyang ZHOU, Yingjie HU, Jiahao LIANG, Qijie ZHOU, Kang WEN, Song CHEN, Juan YANG, Jingjing TANG. Preparation and lithium storage characteristics of high-performance anode materials based on spheroidized tailings of natural flake graphite [J]. Energy Storage Science and Technology, 2023, 12(9): 2767-2777. |
[4] | Wanwei JIANG, Chengjing LIANG, Li QIAN, Meicheng LIU, Mengxiang ZHU, Jun MA. Regulating tin-based three-dimensional graphene foam and its performance as a lithium-ion battery anode [J]. Energy Storage Science and Technology, 2023, 12(9): 2746-2751. |
[5] | Anhao ZUO, Ruqing FANG, Zhe LI. Kinetic characterization of electrode materials for lithium-ion batteries via single-particle microelectrodes [J]. Energy Storage Science and Technology, 2023, 12(8): 2457-2481. |
[6] | Jiaxing YANG, Hengyun ZHANG, Yidong XU. Heat generation analysis for lithium-ion battery components using electrochemical and thermal coupled model [J]. Energy Storage Science and Technology, 2023, 12(8): 2615-2625. |
[7] | Jilu ZHANG, Yuchen DONG, Qiang SONG, Siming YUAN, Xiaodong GUO. Controllable synthesis and electrochemical mechanism related to polycrystalline and single-crystalline Ni-rich layered LiNi0.9Co0.05Mn0.05O2 cathode materials [J]. Energy Storage Science and Technology, 2023, 12(8): 2382-2389. |
[8] | Yu GUO, Yiwei WANG, Juan ZHONG, Jinqiao DU, Jie TIAN, Yan LI, Fangming JIANG. Fault diagnosis method for microinternal short circuits in lithium-ion batteries based on incremental capacity curve [J]. Energy Storage Science and Technology, 2023, 12(8): 2536-2546. |
[9] | Qingsong ZHANG, Fangwei BAO, Jiangjao NIU. Risk analysis method of thermal runaway gas explosion in lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(7): 2263-2270. |
[10] | Shuqin LIU, Xiaoyan WANG, Zhendong ZHANG, Zhenxia DUAN. Experimental and simulation research on liquid-cooling system of lithium-ion battery packs [J]. Energy Storage Science and Technology, 2023, 12(7): 2155-2165. |
[11] | Maosong FAN, Mengmeng GENG, Guangjin ZHAO, Kai YANG, Fangfang WANG, Hao LIU. Research on battery sorting technology for echelon utilization based on multifrequency impedance [J]. Energy Storage Science and Technology, 2023, 12(7): 2202-2210. |
[12] | Yi WANG, Xuebing CHEN, Yuanxi WANG, Jieyun ZHENG, Xiaosong LIU, Hong LI. Overview of multilevel failure mechanism and analysis technology of energy storage lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(7): 2079-2094. |
[13] | Hongsheng GUAN, Cheng QIAN, Binghui XU, Bo SUN, Yi REN. SAM-GRU-based fusion neural network for SOC estimation in lithium-ion batteries under a wide range of operating conditions [J]. Energy Storage Science and Technology, 2023, 12(7): 2229-2237. |
[14] | Yubo ZHANG, Youyuan WANG, Dongning HUANG, Ziyi WANG, Weigen CHEN. Prognostic method of lithium-ion battery lifetime degradation under various working conditions [J]. Energy Storage Science and Technology, 2023, 12(7): 2238-2245. |
[15] | Qinpei CHEN, Xuehui WANG, Wenzhong MI. Experiential study on the toxic and explosive characteristics of thermal runaway gas generated in electric-vehicle lithium-ion battery systems [J]. Energy Storage Science and Technology, 2023, 12(7): 2256-2262. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||