Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (8): 2791-2802.doi: 10.19799/j.cnki.2095-4239.2024.0145
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Yufeng HUANG1(), Huanchao LIANG1, Lei XU2()
Received:
2024-02-23
Revised:
2024-03-01
Online:
2024-08-28
Published:
2024-08-15
Contact:
Lei XU
E-mail:yufengh_sau@sina.com;syfri_xulei@126.com
CLC Number:
Yufeng HUANG, Huanchao LIANG, Lei XU. Kalman filter optimize Transformer method for state of health prediction on lithium-ion battery[J]. Energy Storage Science and Technology, 2024, 13(8): 2791-2802.
Table 1
NASA and CALCE datasets"
参数 | NASA | CALCE CS2 | CALCE CX2 |
---|---|---|---|
电池容量 | 2000 mAh | 1100 mAh | 1350 mAh |
电芯材质 | LiNiMnCo/石墨 | LiCoO2 | LiCoO2 |
标称电压 | 3.7 V | 3.7 V | 3.7 V |
测试温度 | 24 ℃ | 1 ℃ | 0.5 ℃ |
充/放电截止电压 | 4.2V/2.5 V | 4.2V/2.7 V | 4.2V/2.7 V |
充/放电速率 | 2 A(1C) | 1.1 A(1C) | 0.675 A(0.5C) |
电池编号 | B0005, B0006, B0007, B0018 | CS2-35, CS2-36, CS2-37, CS2-38 | CX2-34, CX2-36, CX2-37, CX2-38 |
1 | HANNAN M A, LIPU M S H, HUSSAIN A, et al. A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations[J]. Renewable and Sustainable Energy Reviews, 2017, 78: 834-854. DOI: 10.1016/j.rser.2017.05.001. |
2 | SHRIVASTAVA P, SOON T K, BIN IDRIS M Y I, et al. Overview of model-based online state-of-charge estimation using Kalman filter family for lithium-ion batteries[J]. Renewable and Sustainable Energy Reviews, 2019, 113: DOI: 10.1016/j.rser. 2019.06.040. |
3 | WU L X, LIU K, PANG H. Evaluation and observability analysis of an improved reduced-order electrochemical model for lithium-ion battery[J]. Electrochimica Acta, 2021, 368: DOI: 10.1016/j.electacta.2020.137604. |
4 | LIU Z Y, ZHAO J J, WANG H, et al. A new lithium-ion battery SOH estimation method based on an indirect enhanced health indicator and support vector regression in PHMs[J]. Energies, 2020, 13(4): DOI: 10.3390/en13040830. |
5 | HU X S, XU L, LIN X K, et al. Battery lifetime prognostics[J]. Joule, 2020, 4(2): 310-346. DOI: 10.1016/j.joule.2019.11.018. |
6 | ASHWIN T R, CHUNG Y M, WANG J H. Capacity fade modelling of lithium-ion battery under cyclic loading conditions[J]. Journal of Power Sources, 2016, 328: 586-598. DOI: 10.1016/j.jpowsour. 2016.08.054. |
7 | MISHRA M, MARTINSSON J, RANTATALO M, et al. Bayesian hierarchical model-based prognostics for lithium-ion batteries[J]. Reliability Engineering & System Safety, 2018, 172: 25-35. DOI: 10.1016/j.ress.2017.11.020. |
8 | POLA D A, NAVARRETE H F, ORCHARD M E, et al. Particle-filtering-based discharge time prognosis for lithium-ion batteries with a statistical characterization of use profiles[J]. IEEE Transactions on Reliability, 2015, 64(2): 710-720. DOI: 10.1109/TR.2014.2385069. |
9 | MO B H, YU J S, TANG D Y, et al. A remaining useful life prediction approach for lithium-ion batteries using Kalman filter and an improved particle filter[C]//2016 IEEE International Conference on Prognostics and Health Management (ICPHM). Ottawa, ON, Canada. IEEE, 2016: 1-5. DOI: 10.1109/ICPHM. 2016.7542847. |
10 | YE L H, CHEN S J, SHI Y F, et al. Remaining useful life prediction of lithium-ion battery based on chaotic particle swarm optimization and particle filter[J]. International Journal of Electrochemical Science, 2023, 18(5): DOI: 10.1016/j.ijoes. 2023.100122. |
11 | ZHOU Y P, HUANG M H. Lithium-ion batteries remaining useful life prediction based on a mixture of empirical mode decomposition and ARIMA model[J]. Microelectronics Reliability, 2016, 65: 265-273. DOI: 10.1016/j.microrel.2016.07.151. |
12 | ZHANG Y Z, XIONG R, HE H W, et al. Lithium-ion battery remaining useful life prediction with box-cox transformation and Monte Carlo simulation[J]. IEEE Transactions on Industrial Electronics, 2019, 66(2): 1585-1597. DOI: 10.1109/TIE.2018.2808918. |
13 | ZHANG Y Z, XIONG R, HE H W, et al. Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries[J]. IEEE Transactions on Vehicular Technology, 2018, 67(7): 5695-5705. DOI: 10.1109/TVT.2018.2805189. |
14 | REN L, ZHAO L, HONG S, et al. Remaining useful life prediction for lithium-ion battery: A deep learning approach[J]. IEEE Access, 2018, 6: 50587-50598. DOI: 10.1109/ACCESS.2018.2858856. |
15 | QIN X L, ZHAO Q, ZHAO H B, et al. Prognostics of remaining useful life for lithium-ion batteries based on a feature vector selection and relevance vector machine approach[C]//2017 IEEE International Conference on Prognostics and Health Management (ICPHM). Dallas, TX, USA. IEEE, 2017: 1-6. DOI: 10.1109/ICPHM.2017.7998297. |
16 | NUHIC A, TERZIMEHIC T, SOCZKA-GUTH T, et al. Health diagnosis and remaining useful life prognostics of lithium-ion batteries using data-driven methods[J]. Journal of Power Sources, 2013, 239: 680-688. DOI: 10.1016/j.jpowsour.2012.11.146. |
17 | WENG C H, CUI Y J, SUN J, et al. On-board state of health monitoring of lithium-ion batteries using incremental capacity analysis with support vector regression[J]. Journal of Power Sources, 2013, 235: 36-44. DOI: 10.1016/j.jpowsour.2013.02.012. |
18 | LVOVICH V, WU J, BENNETT W, et al. Applications of AC impedance spectroscopy as characterization and diagnostic tool in Li-metal battery cells[J]. ECS Transactions, 2014, 58(22): 1-14. DOI: 10.1149/05822.0001ecst. |
19 | HUANG J, LI Z, ZHANG J B. Dynamic electrochemical impedance spectroscopy reconstructed from continuous impedance measurement of single frequency during charging/discharging[J]. Journal of Power Sources, 2015, 273: 1098-1102. DOI: 10.1016/j.jpowsour.2014.07.067. |
20 | TRAN M K, MATHEW M, JANHUNEN S, et al. A comprehensive equivalent circuit model for lithium-ion batteries, incorporating the effects of state of health, state of charge, and temperature on model parameters[J]. Journal of Energy Storage, 2021, 43: DOI: 10.1016/j.est.2021.103252. |
21 | DING X F, ZHANG D H, CHENG J W, et al. An improved Thevenin model of lithium-ion battery with high accuracy for electric vehicles[J]. Applied Energy, 2019, 254: 113615. DOI: 10.1016/j.apenergy.2019.113615. |
22 | ZHANG X Q, ZHANG W P, LEI G Y. A review of Li-ion battery equivalent circuit models[J]. Transactions on Electrical and Electronic Materials, 2016, 17(6): 311-316. DOI: 10.4313/teem.2016.17.6.311. |
23 | PLETT G L. High-performance battery-pack power estimation using a dynamic cell model[J]. IEEE Transactions on Vehicular Technology, 2004, 53(5): 1586-1593. DOI: 10.1109/TVT.2004.832408. |
24 | LI Y, LIU K L, FOLEY A M, et al. Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review[J]. Renewable and Sustainable Energy Reviews, 2019, 113: 109254. DOI: 10.1016/j.rser.2019.109254. |
25 | VANEM E, SALUCCI C B, BAKDI A, et al. Data-driven state of health modelling—A review of state of the art and reflections on applications for maritime battery systems[J]. Journal of Energy Storage, 2021, 43: 103158. DOI: 10.1016/j.est.2021.103158. |
26 | YANG D D, LU J Y, DONG H L, et al. Pipeline signal feature extraction method based on multi-feature entropy fusion and local linear embedding[J]. Systems Science & Control Engineering, 2022, 10(1): 407-416. DOI: 10.1080/21642583. 2022.2063202. |
27 | LIANG C M, LI Y W, LIU Y H, et al. Segmentation and weight prediction of grape ear based on SFNet-ResNet18[J]. Systems Science & Control Engineering, 2022, 10(1): 722-732. DOI: 10.1080/21642583.2022.2110541. |
28 | LI X G, FENG S, HOU N, et al. Surface microseismic data denoising based on sparse autoencoder and Kalman filter[J]. Systems Science & Control Engineering, 2022, 10(1): 616-628. DOI: 10.1080/21642583.2022.2087786. |
29 | FINE T L. Fundamentals of artificial neural networks[book reviews[J]. IEEE Transactions on Information Theory, 1996, 42(4): 1322. DOI: 10.1109/TIT.1996.508868. |
30 | WANG Z P, MA J, ZHANG L. State-of-health estimation for lithium-ion batteries based on the multi-island genetic algorithm and the Gaussian process regression[J]. IEEE Access, 2017, 5: 21286-21295. DOI: 10.1109/ACCESS.2017.2759094. |
31 | SHE C Q, LI Y, ZOU C F, et al. Offline and online blended machine learning for lithium-ion battery health state estimation[J]. IEEE Transactions on Transportation Electrification, 2022, 8(2): 1604-1618. DOI: 10.1109/TTE.2021.3129479. |
32 | 陈欣, 李云伍, 梁新成, 等. 基于模态分解的Transformer-GRU联合电池健康状态估计[J]. 储能科学与技术, 2023, 12(9): 2927-2936. DOI: 10.19799/j.cnki.2095-4239.2023.0323. |
CHEN X, LI Y W, LIANG X C, et al. Battery health state estimation of combined Transformer-GRU based on modal decomposition[J]. Energy Storage Science and Technology, 2023, 12(9): 2927-2936. DOI: 10.19799/j.cnki.2095-4239. 2023.0323. | |
33 | 毛百海, 覃吴, 肖显斌, 等. 基于LSTM&GRU-Attention多联合模型的锂离子电池SOH估计[J]. 储能科学与技术, 2023, 12(11): 3519-3527. DOI: 10.19799/j.cnki.2095-4239.2023.0514. |
MAO B H, QIN W, XIAO X B, et al. SOH estimation of lithium-ion batteries based on LSTM & GRU-Attention multijoint model[J]. Energy Storage Science and Technology, 2023, 12(11): 3519-3527. DOI: 10.19799/j.cnki.2095-4239.2023.0514. | |
34 | 申小雨, 尹丛勃. 基于卷积Fastformer的锂离子电池健康状态估计[J]. 储能科学与技术, 2024, 13(3): 990-999. DOI: 10.19799/j.cnki.2095-4239.2023.0735. |
SHEN X Y, YIN C B. SOH estimation of lithium-ion batteries using a convolutional Fastformer[J]. Energy Storage Science and Technology, 2024, 13(3): 990-999. DOI: 10.19799/j.cnki.2095-4239.2023.0735. | |
35 | HE W, WILLIARD N, OSTERMAN M, et al. Prognostics of lithium-ion batteries based on Dempster-shafer theory and the Bayesian Monte Carlo method[J]. Journal of Power Sources, 2011, 196(23): 10314-10321. DOI: 10.1016/j.jpowsour.2011.08.040. |
36 | XING Y J, MA E W M, TSUI K L, et al. An ensemble model for predicting the remaining useful performance of lithium-ion batteries[J]. Microelectronics Reliability, 2013, 53(6): 811-820. DOI: 10.1016/j.microrel.2012.12.003. |
37 | WILLIARD N, HE W, OSTERMAN M, et al. Comparative analysis of features for determining state of health in lithium-ion batteries[J]. International Journal of Prognostics and Health Management, 2020, 4(1): DOI: 10.36001/ijphm.2013.v4i1.1437. |
[1] | Zheng CHEN, Bo YANG, Zhigang ZHAO, Jiangwei SHEN, Renxin XIAO, Xuelei XIA. State of charge estimation considering lithium battery temperature and aging [J]. Energy Storage Science and Technology, 2024, 13(8): 2813-2822. |
[2] | Guohe CHEN, Peizhao LYU, Menghan LI, Zhonghao RAO. Research progress on thermal runaway propagation characteristics of lithium-ion batteries and its inhibiting strategies [J]. Energy Storage Science and Technology, 2024, 13(7): 2470-2482. |
[3] | Chengxin LIU, Ziheng LI, Zeyu CHEN, Pengxiang LI, Qingyi TAO. Characterization study on overheat-induced thermal runaway for lithium-ion battery in energy storage [J]. Energy Storage Science and Technology, 2024, 13(7): 2425-2431. |
[4] | Shijie LIAO, Ying WEI, Yunhui HUANG, Renzong HU, Henghui XU. 1,3-Difluorobenzene diluent-stabilizing electrode interface for high-performance low-temperature lithium metal batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2124-2130. |
[5] | Guozheng MA, Jinwei CHEN, Xingyu XIONG, Zhenzhong YANG, Gang ZHOU, Rengzong HU. High-rate lithium storage performance of SnSb-Li4Ti5O12 composite anode for Li-ion batteries at low-temperature [J]. Energy Storage Science and Technology, 2024, 13(7): 2107-2115. |
[6] | Wentao WANG, Yifan WEI, Kun HUANG, Guowei LV, Siyao ZHANG, Xinya TANG, Zeyan CHEN, Qingyuan LIN, Zhipeng MU, Kunhua WANG, Hua CAI, Jun CHEN. Testing standards and developmental advances for low-temperature Li-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2300-2307. |
[7] | Guangyu CHENG, Xinwei LIU, Shuo LIU, Haitao GU, Ke WANG. Controlling electrolyte solvent components to enhance cycle life of LCO/C low-temperature 18650 batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2171-2180. |
[8] | Shuping WANG, Xiankun YANG, Changhao LI, Ziqi ZENG, Yifeng CHENG, Jia XIE. Diethyl ethylphosphonate-based flame-retardant wide-temperature-range electrolyte in lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2161-2170. |
[9] | Guobin ZHONG, Xin YAO, Yongchao LIU, Qian HOU, Hongfa XIANG. Challenges and prospects of high-safety composite separators for lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(6): 1794-1806. |
[10] | Mingxian LIU, Jibiao LI, Bingnan TANG, Yi YANG, Renxin XIAO. Online state-of-energy estimation method for lithium-ion batteries used in wearable devices based on adaptive unscented Kalman filter [J]. Energy Storage Science and Technology, 2024, 13(5): 1688-1698. |
[11] | Ziwei TANG, Yupu SHI, Yuchan ZHANG, Yibo ZHOU, Huiling DU. Prediction of lithium-ion battery capacity degradation trajectory based on Informer [J]. Energy Storage Science and Technology, 2024, 13(5): 1658-1666. |
[12] | Nana FENG, Ming YANG, Zhouli HUI, Ruijie WANG, Hongyang NING. Prediction of the remaining useful life of lithium batteries based on Antlion optimization Gaussian process regression [J]. Energy Storage Science and Technology, 2024, 13(5): 1643-1652. |
[13] | Gaoqi LIAN, Min YE, Qiao WANG, Yan LI, Yuchuan MA, Yiding SUN, Penghui DU. State-of-charge estimation of lithium-ion batteries in rapid temperature-varying environments based on improved battery model and optimized adaptive cubature Kalman filter [J]. Energy Storage Science and Technology, 2024, 13(5): 1667-1676. |
[14] | Xinbing XIE, Kaiyue YANG, Xiaozhong DU. Mechanical behavior and structure of lithium-ion battery electrode calendering process [J]. Energy Storage Science and Technology, 2024, 13(5): 1699-1706. |
[15] | Lin HE, Jiangyan LIU, Bin LIU, Kuining LI, Shuai DAI. Generalized impact of data distribution diversity on SOC prediction of lithium battery [J]. Energy Storage Science and Technology, 2024, 13(5): 1677-1687. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||