Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (9): 3254-3265.doi: 10.19799/j.cnki.2095-4239.2024.0157
• Energy Storage System and Engineering • Previous Articles Next Articles
Zhonglin SUN(), Jiabo LI(), Di TIAN, Zhixuan WANG, Xiaojing XING
Received:
2024-02-28
Revised:
2024-03-11
Online:
2024-09-28
Published:
2024-09-20
Contact:
Jiabo LI
E-mail:1748566311@qq.com;jianbool72@foxmail.com
CLC Number:
Zhonglin SUN, Jiabo LI, Di TIAN, Zhixuan WANG, Xiaojing XING. Useful life prediction for lithium-ion batteries based on COA-LSTM and VMD[J]. Energy Storage Science and Technology, 2024, 13(9): 3254-3265.
1 | TANG X P, ZOU C F, WIK T, et al. Run-to-Run control for active balancing of lithium iron phosphate battery packs[J]. IEEE Transactions on Power Electronics, 2020, 35(2): 1499-1512. DOI: 10.1109/TPEL.2019.2919709. |
2 | 林娜, 朱武, 邓安全. 基于融合方法预测锂离子电池剩余寿命[J]. 科学技术与工程, 2020, 20(5): 1928-1933. DOI: 10.3969/j.issn.1671-1815.2020.05.033. |
LIN N, ZHU W, DENG A Q. Remaining useful life prediction of the lithium-ion battery based on fusion method[J]. Science Technology and Engineering, 2020, 20(5): 1928-1933. DOI: 10.3969/j.issn.1671-1815.2020.05.033. | |
3 | 张宇波, 王有元, 黄洞宁, 等. 面向变工况条件的锂离子电池寿命退化预测方法[J]. 储能科学与技术, 2023, 12(7): 2238-2245. DOI: 10.19799/j.cnki.2095-4239.2023.0233. |
ZHANG Y B, WANG Y Y, HUANG D N, et al. Prognostic method of lithium-ion battery lifetime degradation under various working conditions[J]. Energy Storage Science and Technology, 2023, 12(7): 2238-2245. DOI: 10.19799/j.cnki.2095-4239.2023.0233. | |
4 | GE M F, LIU Y B, JIANG X X, et al. A review on state of health estimations and remaining useful life prognostics of lithium-ion batteries[J]. Measurement, 2021, 174: 109057. DOI: 10.1016/j.measurement.2021.109057. |
5 | LIU C, WANG Y J, CHEN Z H. Degradation model and cycle life prediction for lithium-ion battery used in hybrid energy storage system[J]. Energy, 2019, 166: 796-806. DOI: 10.1016/j.energy.2018.10.131. |
6 | 刘月峰, 赵光权, 彭喜元. 多核相关向量机优化模型的锂电池剩余寿命预测方法[J]. 电子学报, 2019, 47(6): 1285-1292. DOI: 10.3969/j.issn.0372-2112.2019.06.015. |
LIU Y F, ZHAO G Q, PENG X Y. A lithium-ion battery remaining using life prediction method based on multi-kernel relevance vector machine optimized model[J]. Acta Electronica Sinica, 2019, 47(6): 1285-1292. DOI: 10.3969/j.issn.0372-2112.2019.06.015. | |
7 | OUYANG T C, XU P H, CHEN J X, et al. An online prediction of capacity and remaining useful life of lithium-ion batteries based on simultaneous input and state estimation algorithm[J]. IEEE Transactions on Power Electronics, 2021, 36(7): 8102-8113. DOI: 10.1109/TPEL.2020.3044725. |
8 | WANG S L, FERNANDEZ C, YU C M, et al. A novel charged state prediction method of the lithium ion battery packs based on the composite equivalent modeling and improved splice Kalman filtering algorithm[J]. Journal of Power Sources, 2020, 471: 228450. DOI: 10.1016/j.jpowsour.2020.228450. |
9 | 陈翔, 夏飞. 基于CEEMD-AKF的锂电池剩余使用寿命预测方法[J]. 哈尔滨理工大学学报, 2023, 28(3): 28-36. DOI: 10.15938/j.jhust.2023.03.004. |
CHEN X, XIA F. Remaining useful life predictionmethod for lithium-ion batteries based on CEEMD-AKF[J]. Journal of Harbin University of Science and Technology, 2023, 28(3): 28-36. DOI: 10.15938/j.jhust.2023.03.004. | |
10 | REN L, ZHAO L, HONG S, et al. Remaining useful life prediction for lithium-ion battery: A deep learning approach[J]. IEEE Access, 2018, 6: 50587-50598. DOI: 10.1109/ACCESS.2018.2858856. |
11 | SHU X, LI G, SHEN J W, et al. A uniform estimation framework for state of health of lithium-ion batteries considering feature extraction and parameters optimization[J]. Energy, 2020, 204: 117957. DOI: 10.1016/j.energy.2020.117957. |
12 | ZHANG Y Z, XIONG R, HE H W, et al. Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries[J]. IEEE Transactions on Vehicular Technology, 2018, 67(7): 5695-5705. DOI: 10.1109/TVT.2018.2805189. |
13 | 徐彬泰, 孟祥鹿, 田安琪, 等. 基于粒子群优化及高斯过程回归的铅酸电池荷电状态预测[J]. 南京理工大学学报, 2018, 42(2): 162-168. DOI: 10.14177/j.cnki.32-1397n.2018.42.02.005. |
XU B T, MENG X L, TIAN A Q, et al. Prediction for state of charge of lead-acid battery by particle swarm optimization with Gaussian process regression[J]. Journal of Nanjing University of Science and Technology, 2018, 42(2): 162-168. DOI: 10.14177/j.cnki.32-1397n.2018.42.02.005. | |
14 | 张浩, 胡昌华, 杜党波, 等. 多状态影响下基于Bi⁃LSTM网络的锂电池剩余寿命预测方法[J]. 电子学报, 2022, 50(3): 619-624. DOI: 10.12263/DZXB.20210207. |
ZHANG H, HU C H, DU D B, et al. Remaining useful life prediction method of lithium? Ion battery based on Bi-LSTM network under Multi-state influence[J]. Acta Electronica Sinica, 2022, 50(3): 619-624. DOI: 10.12263/DZXB.20210207. |
[1] | Jizhong LU, Simin PENG, Xiaoyu LI. State-of-health estimation of lithium-ion batteries based on multifeature analysis and LSTM-XGBoost model [J]. Energy Storage Science and Technology, 2024, 13(9): 2972-2982. |
[2] | Xuefeng HU, Xianlei CHANG, Xiaoxiao LIU, Wei XU, Wenbin ZHANG. SOC estimation of lithium-ion batteries under multiple temperatures conditions based on MIARUKF algorithm [J]. Energy Storage Science and Technology, 2024, 13(9): 2983-2994. |
[3] | Siyuan SHEN, Yakun LIU, Donghuang LUO, Yujun LI, Wei HAO. Transient overvoltage protection design and circuit development for energy storage lithium-ion battery modules [J]. Energy Storage Science and Technology, 2024, 13(9): 3277-3286. |
[4] | Yuan CHEN, Siyuan ZHANG, Yujing CAI, Xiaohe HUANG, Yanzhong LIU. State-of-health estimation of lithium batteries based on polynomial feature extension of the CNN-transformer model [J]. Energy Storage Science and Technology, 2024, 13(9): 2995-3005. |
[5] | Ruihe XING, Suting WENG, Yejing LI, Jiayi ZHANG, Hao ZHANG, Xuefeng WANG. AI-assisted battery material characterization and data analysis [J]. Energy Storage Science and Technology, 2024, 13(9): 2839-2863. |
[6] | Hongsheng GUAN, Cheng QIAN, Bo SUN, Yi REN. Predicting capacity degradation trajectory for lithium-ion batteries under limited data conditions [J]. Energy Storage Science and Technology, 2024, 13(9): 3084-3093. |
[7] | Xue KE, Huawei HONG, Peng ZHENG, Zhicheng LI, Peixiao FAN, Jun YANG, Yuzheng GUO, Chunguang KUAI. Estimating lithium-ion battery health using automatic feature extraction and channel attention mechanisms for multi-timescale modeling [J]. Energy Storage Science and Technology, 2024, 13(9): 3059-3071. |
[8] | Chengwen TIAN, Bingxiang SUN, Xinze ZHAO, Zhicheng FU, Shichang MA, Bo ZHAO, Xubo ZHANG. Accelerated life prediction of lithium-ion batteries using data-driven approaches [J]. Energy Storage Science and Technology, 2024, 13(9): 3103-3111. |
[9] | Qingbo LI, Maohui ZHANG, Ying LUO, Taolin LYU, Jingying XIE. Lithium-ion battery state of charge estimation based on equivalent circuit model [J]. Energy Storage Science and Technology, 2024, 13(9): 3072-3083. |
[10] | Zhenwei ZHU, Jiawei MIAO, Xiayu ZHU, Xiaoxu WANG, Jingyi QIU, Hao ZHANG. Research progress in lithium-ion battery remaining useful life prediction based on machine learning [J]. Energy Storage Science and Technology, 2024, 13(9): 3134-3149. |
[11] | Bingxiang SUN, Xin YANG, Xingzhen ZHOU, Shichang MA, Zhihao WANG, Weige ZHANG. Comparative parametric study of metaheuristics based on impedance modeling for lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(9): 2952-2962. |
[12] | Yufeng HUANG, Huanchao LIANG, Lei XU. Kalman filter optimize Transformer method for state of health prediction on lithium-ion battery [J]. Energy Storage Science and Technology, 2024, 13(8): 2791-2802. |
[13] | Zheng CHEN, Bo YANG, Zhigang ZHAO, Jiangwei SHEN, Renxin XIAO, Xuelei XIA. State of charge estimation considering lithium battery temperature and aging [J]. Energy Storage Science and Technology, 2024, 13(8): 2813-2822. |
[14] | Guohe CHEN, Peizhao LYU, Menghan LI, Zhonghao RAO. Research progress on thermal runaway propagation characteristics of lithium-ion batteries and its inhibiting strategies [J]. Energy Storage Science and Technology, 2024, 13(7): 2470-2482. |
[15] | Chengxin LIU, Ziheng LI, Zeyu CHEN, Pengxiang LI, Qingyi TAO. Characterization study on overheat-induced thermal runaway for lithium-ion battery in energy storage [J]. Energy Storage Science and Technology, 2024, 13(7): 2425-2431. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||