Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (9): 3245-3253.doi: 10.19799/j.cnki.2095-4239.2024.0120
• Energy Storage Materials and Devices • Previous Articles Next Articles
Yuman ZHANG(), Lingling FAN, Chongyang YANG()
Received:
2024-02-18
Revised:
2024-04-29
Online:
2024-09-28
Published:
2024-09-20
Contact:
Chongyang YANG
E-mail:jshfengwu@163.com;ycy6142@sina.com
CLC Number:
Yuman ZHANG, Lingling FAN, Chongyang YANG. Effects of different anode materials on the cyclic performance of high-power LiFePO4 energy storage devices[J]. Energy Storage Science and Technology, 2024, 13(9): 3245-3253.
Table 3
EIS fitting data of energy storage devices based on HC, SC, and Gr anodes"
负极 | 循环前 | 循环后 | 变化 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Rs/mΩ | RSEI/mΩ | RCT/mΩ | Rs/mΩ | RSEI/mΩ | RCT/mΩ | Aw×104 | △Rs/mΩ | △RSEI/mΩ | △RCT/mΩ | |
HC | 0.880 | 0.552 | 0.090 | 1.042 | 1.334 | 0.181 | 5.801 | 0.162 | 0.782 | 0.090 |
SC | 0.881 | 1.447 | 0.063 | 1.085 | 2.519 | 0.097 | 4.889 | 0.204 | 1.072 | 0.034 |
Gr | 0.741 | 0.012 | 0.033 | 1.366 | 3.434 | 0.412 | 7.334 | 0.626 | 3.422 | 0.379 |
1 | BENOY S M, PANDEY M, BHATTACHARJYA D, et al. Recent trends in supercapacitor-battery hybrid energy storage devices based on carbon materials[J]. Journal of Energy Storage, 2022, 52: 104938. DOI: 10.1016/j.est.2022.104938. |
2 | ZUBI G, DUFO-LÓPEZ R, CARVALHO M, et al. The lithium-ion battery: State of the art and future perspectives[J]. Renewable and Sustainable Energy Reviews, 2018, 89: 292-308. DOI: 10.1016/j.rser.2018.03.002. |
3 | 尹莲芳, 谢乐琼, 刘建红, 等. 磷酸铁锂电池应用展望[J]. 电池工业, 2021, 25(1): 50-53. DOI: 10.3969/j.issn.1008-7923.2021.01.011. |
YIN L F, XIE L Q, LIU J H, et al. Prospectives of LiFePO4 based batteries[J]. Chinese Battery Industry, 2021, 25(1): 50-53. DOI: 10.3969/j.issn.1008-7923.2021.01.011. | |
4 | LI Z H, ZHANG D M, YANG F X. Developments of lithium-ion batteries and challenges of LiFePO4 as one promising cathode material[J]. Journal of Materials Science, 2009, 44(10): 2435-2443. DOI: 10.1007/s10853-009-3316-z. |
5 | 华宁, 崔涛, 韩英, 等. 锂离子蓄电池正极材料LiFePO4研究进展[J]. 电子元件与材料, 2007, 26(12): 1-4. |
HUA N, CUI T, HAN Y, et al. Research progress in lithium iron phosphate as cathode material[J]. Electronic Components and Materials, 2007, 26(12): 1-4. | |
6 | LI X Z, ZHANG M, YUAN S X, et al. Research progress of silicon/carbon anode materials for lithium-ion batteries: Structure design and synthesis method[J]. ChemElectroChem, 2020, 7(21): 4289-4302. DOI: 10.1002/celc.202001060. |
7 | ZHENG P L, SUN J C, LIU H Y, et al. Microstructure engineered silicon alloy anodes for lithium-ion batteries: Advances and challenges[J]. Batteries & Supercaps, 2023, 6(1): 2200481. DOI: 10.1002/batt.202200481. |
8 | LIANG X Q, QI R J, ZHAO M, et al. Ultrafast lithium-ion capacitors for efficient storage of energy generated by triboelectric nanogenerators[J]. Energy Storage Materials, 2020, 24: 297-303. DOI: 10.1016/j.ensm.2019.08.002. |
9 | YUAN S, LAI Q H, DUAN X, et al. Carbon-based materials as anode materials for lithium-ion batteries and lithium-ion capacitors: A review[J]. Journal of Energy Storage, 2023, 61: 106716. DOI: 10.1016/j.est.2023.106716. |
10 | 王宇作, 王瑨, 卢颖莉, 等. 孔结构对软碳负极储锂性能的影响[J]. 储能科学与技术, 2022, 11(7): 2023-2029. DOI: 10.19799/j.cnki.2095-4239.2022.0037. |
WANG Y Z, WANG J, LU Y L, et al. Study on the effects of pore structure on lithium-storage performances for soft carbon[J]. Energy Storage Science and Technology, 2022, 11(7): 2023-2029. DOI: 10.19799/j.cnki.2095-4239.2022.0037. | |
11 | 廖雅贇, 周峰, 张颖曦, 等. 锂离子电池快充石墨负极材料研究进展[J]. 储能科学与技术, 2024, 13(1): 130-142. DOI: 10.19799/j.cnki.2095-4239.2023.0777. |
LIAO Y Y, ZHOU F, ZHANG Y X, et al. Research progress on fast-charging graphite anode materials for lithium-ion batteries[J]. Energy Storage Science and Technology, 2024, 13(1): 130-142. DOI: 10.19799/j.cnki.2095-4239.2023.0777. | |
12 | 陈思, 章庆林, 杨重阳, 等. 负极石墨/硬碳电极对循环性能的影响[J]. 电源技术, 2020, 44(4): 485-488. DOI: 10.3969/j.issn.1002-087X.2020.04.003. |
CHEN S, ZHANG Q L, YANG C Y, et al. Influence of graphite/hard carbon anode on cycling performance[J]. Chinese Journal of Power Sources, 2020, 44(4): 485-488. DOI: 10.3969/j.issn.1002-087X.2020.04.003. | |
13 | YU H C, DONG X L, PANG Y, et al. High power lithium-ion battery based on spinel cathode and hard carbon anode[J]. Electrochimica Acta, 2017, 228: 251-258. DOI: 10.1016/j.electacta.2017.01.096. |
14 | AN Z X, FANG W Y, XU J Q, et al. Comparative analysis of electrochemical performances and capacity degrading behaviors in lithium-ion capacitors based on different anodic materials[J]. Ionics, 2019, 25(7): 3277-3285. DOI: 10.1007/s11581-019-02848-2. |
15 | LI S T, MENG Q H, FAN M S, et al. Analysis for performance degradation mechanisms of the retired LiFePO4/graphite power cells[J]. Ionics, 2020, 26(9): 4443-4454. DOI: 10.1007/s11581-020-03590-w. |
16 | KIM J, LEE W, SEOK J, et al. Electrochemical profiling method for diagnosis of inhomogeneous reactions in lithium-ion batteries[J]. Cell Reports Physical Science, 2023, 4(4): 101331. DOI: 10.1016/j.xcrp.2023.101331. |
17 | 于维珂, 汪涛, 杨尘. 储能用锂离子电池充放电能量效率的影响因素[J]. 电池, 2020, 50(6): 552-555. DOI: 10.19535/j.1001-1579.2020.06.010. |
YU W K, WANG T, YANG C. Influence factors of charge-discharge energy efficiency of Li-ion battery for energy storage[J]. Battery Bimonthly, 2020, 50(6): 552-555. DOI: 10.19535/j.1001-1579.2020.06.010. | |
18 | 王振, 李建玲, 王康康, 等. 磷酸铁锂/石墨动力电池衰退机理分析[J]. 稀有金属与硬质合金, 2020, 48(3): 60-66. |
WANG Z, LI J L, WANG K K, et al. Analysis of capacity fading mechanisms of LiFePO4/graphite power battery[J]. Rare Metals and Cemented Carbides, 2020, 48(3): 60-66. | |
19 | 赵光金, 董锐锋, 王放放, 等. 磷酸铁锂电池充放电循环过程中电化学阻抗实验研究[J]. 热力发电, 2020, 49(8): 64-70. DOI: 10.19666/j.rlfd.202004110. |
ZHAO G J, DONG R F, WANG F F, et al. Experimental study on electrochemical impedance of lithium iron phosphate batteries during charging and discharging cycle[J]. Thermal Power Generation, 2020, 49(8): 64-70. DOI: 10.19666/j.rlfd.202004110. | |
20 | TEO L P, BURAIDAH M H, AROF A K. Study on Li+ ion diffusion in Li2SnO3 anode material by CV and EIS techniques[J]. Molecular Crystals and Liquid Crystals, 2019, 694(1): 117-130. DOI: 10.1080/15421406.2020.1723899. |
21 | WANG M, LUO M, CHEN Y B, et al. Electrochemical deintercalation kinetics of 0.5Li2MnO3·0.5LiNi1/3Mn1/3Co1/3O2 studied by EIS and PITT[J]. Journal of Alloys and Compounds, 2017, 696: 907-913. DOI: 10.1016/j.jallcom.2016.12.085. |
22 | SONG X Y, KINOSHITA K, TRAN T D. Microstructural characterization of lithiated graphite[J]. Journal of the Electrochemical Society, 1996, 143(6): L120-L123. DOI: 10.1149/1.1836896. |
23 | SCHROEDER M, MENNE S, SÉGALINI J, et al. Considerations about the influence of the structural and electrochemical properties of carbonaceous materials on the behavior of lithium-ion capacitors[J]. Journal of Power Sources, 2014, 266: 250-258. DOI: 10.1016/j.jpowsour.2014.05.024. |
24 | AN S J, LI J L, DANIEL C, et al. The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling[J]. Carbon, 2016, 105: 52-76. DOI: 10.1016/j.carbon.2016.04.008. |
25 | LI D J, DANILOV D, ZHANG Z R, et al. Modeling the SEI-formation on graphite electrodes in LiFePO4 batteries[J]. Journal of the Electrochemical Society, 2015, 162(6): A858-A869. DOI: 10.1149/2.0161506jes. |
26 | ANDO K, MATSUDA T, IMAMURA D. Degradation diagnosis of lithium-ion batteries with a LiNi0.5Co0.2Mn0.3O2 and LiMn2O4 blended cathode using dV/dQ curve analysis[J]. Journal of Power Sources, 2018, 390: 278-285. DOI: 10.1016/j.jpowsour.2018. 04.043. |
27 | SMITH A J, DAHN J R. Delta differential capacity analysis[J]. Journal of the Electrochemical Society, 2012, 159(3): A290-A293. DOI: 10.1149/2.076203jes. |
28 | KATO H, KOBAYASHI Y, MIYASHIRO H. Differential voltage curve analysis of a lithium-ion battery during discharge[J]. Journal of Power Sources, 2018, 398: 49-54. DOI: 10.1016/j.jpowsour.2018.07.043. |
29 | 黄海宁. 磷酸铁锂电池循环寿命衰减和寿命预测[J]. 电源技术, 2022, 46(4): 376-379. DOI: 10.3969/j.issn.1002-087X.2022.04.009. |
HUANG H N. Cycle life fading of LiFePO4 lithium-ion battery and its life prediction[J]. Chinese Journal of Power Sources, 2022, 46(4): 376-379. DOI: 10.3969/j.issn.1002-087X.2022.04.009. |
[1] | Zhiyong WANG, Junyao CAI, Yingqi SHE, Shulin ZHONG, Kanghua PAN. Surface-modification of graphite with N-heterocyclic conducting polymers as high performance anodes for Li-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(8): 2511-2518. |
[2] | Xiongwen XU, Ying MO, Wang ZHOU, Huandong YAO, Juan HONG, Hua LEI, Jian TU, Jilei LIU. Effect of hard carbon kinetic properties on low-temperature performance of Na-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2141-2150. |
[3] | Guangyu CHENG, Xinwei LIU, Shuo LIU, Haitao GU, Ke WANG. Controlling electrolyte solvent components to enhance cycle life of LCO/C low-temperature 18650 batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2171-2180. |
[4] | Pengfei XIAO, Lin MEI, Libao CHEN. Multicomponent-coated graphite composite anodes for low-temperature electrochemical energy storage [J]. Energy Storage Science and Technology, 2024, 13(7): 2116-2123. |
[5] | Shuping WANG, Xiankun YANG, Changhao LI, Ziqi ZENG, Yifeng CHENG, Jia XIE. Diethyl ethylphosphonate-based flame-retardant wide-temperature-range electrolyte in lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2161-2170. |
[6] | Cong SUO, Yangfeng WANG, Zichen ZHU, Yan YANG. Research progress of soft carbon as negative electrodes in sodium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(6): 1807-1823. |
[7] | Yuanyuan JIANG, Fangfang TU, Fangping ZHANG, Yinglai WANG, Jiawen CAI, Donghui YANG, Yanhong LI, Jiayuan XIANG, Xinhui XIA, Jipeng FU. Study on technology and mechanism of prelithiation for high-performance lithium iron phosphate battery [J]. Energy Storage Science and Technology, 2024, 13(5): 1435-1442. |
[8] | Chengfan JIANG, Jun HUANG, Haibo XIE. Improving the initial coulombic efficiency of hard carbon materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(3): 825-840. |
[9] | Hongbing CHEN, Yuhang LIU, Congcong WANG, Men LI, Yan ZHANG, Haoyang LU, Chunyang LI. Properties of composite shape-stabilized phase change materials incorporating docosane and dodecyl alcohol with added expanded graphite [J]. Energy Storage Science and Technology, 2024, 13(2): 396-404. |
[10] | Fei HAO, Junming WANG, Chunwei DONG, Linlin WEI, Yang DONG, Zhijiang SU, Wenbing LIANG. Preparation and research of three-dimensional silicon carbon anodes with a hollow structure [J]. Energy Storage Science and Technology, 2024, 13(1): 325-332. |
[11] | Yayun LIAO, Feng ZHOU, Yingxi ZHANG, Tu'an LV, Yang HE, Xiaoyan CHEN, Kaifu HUO. Research progress on fast-charging graphite anode materials for lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(1): 130-142. |
[12] | Xin JIN, Jianru ZHANG, Qiyu WANG, Rui ZHANG, Bitong WANG, Zhongyang ZHANG, Hailong YU, Xiqian YU, Hong LI. Study on thermal runaway of hybrid solid-liquid batteries [J]. Energy Storage Science and Technology, 2024, 13(1): 48-56. |
[13] | Xiangyang ZHOU, Yingjie HU, Jiahao LIANG, Qijie ZHOU, Kang WEN, Song CHEN, Juan YANG, Jingjing TANG. Preparation and lithium storage characteristics of high-performance anode materials based on spheroidized tailings of natural flake graphite [J]. Energy Storage Science and Technology, 2023, 12(9): 2767-2777. |
[14] | Qi ZHANG, Yinlei LI, Yanfang LI, Jun SONG, Xuehong WU, Chongyang LIU, Xueling ZHANG. Preparation and thermal characterization of expanded graphite/multiwalled carbon nanotube-based eutectic salt-composite phase change materials [J]. Energy Storage Science and Technology, 2023, 12(8): 2435-2443. |
[15] | Jiayi ZHANG, Suting WENG, Zhaoxiang WANG, Xuefeng WANG. Solid electrolyte interphase (SEI) on graphite anode correlated with thermal runaway of lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(7): 2105-2118. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||