Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (10): 3343-3356.doi: 10.19799/j.cnki.2095-4239.2024.0256
• Energy Storage Materials and Devices • Previous Articles Next Articles
Yueming MIN1,2(), Chuang ZHANG1,2, Wenjie LIU1,2, Suzhen LIU1,2, Zhicheng XU1,2()
Received:
2024-03-22
Revised:
2024-04-18
Online:
2024-10-28
Published:
2024-10-30
Contact:
Zhicheng XU
E-mail:202121401001@stu.hebut.edu.cn;xzc@hebut.edu.cn
CLC Number:
Yueming MIN, Chuang ZHANG, Wenjie LIU, Suzhen LIU, Zhicheng XU. Study on aging characteristics and failure mechanism of lithium-ion battery under slight-overcharge cycling[J]. Energy Storage Science and Technology, 2024, 13(10): 3343-3356.
Table 3
EDS surface composition analysis of cathode materials from fresh and slight-overcharge cycling batteries"
元素 | 原子百分比/% | 质量分数/% | ||||||
---|---|---|---|---|---|---|---|---|
原始 | 4.3 V | 4.4 V | 4.5 V | 原始 | 4.3 V | 4.4 V | 4.5 V | |
C | 45.3 | 43.8 | 43.7 | 44.3 | 25.20 | 23.93 | 22.84 | 25.32 |
O | 27.7 | 28.5 | 27.5 | 24.4 | 20.51 | 20.76 | 20.57 | 18.57 |
F | 9.6 | 9.6 | 11.4 | 15.5 | 8.40 | 8.34 | 9.96 | 13.99 |
P | 0.5 | 0.4 | 0.5 | 1 | 0.67 | 0.50 | 0.83 | 1.41 |
Ni | 8.3 | 8.7 | 8.2 | 7.2 | 22.49 | 23.26 | 23.03 | 20.21 |
Co | 3.3 | 3.4 | 3.3 | 2.9 | 9.04 | 9.07 | 8.85 | 8.25 |
Mn | 5.4 | 5.7 | 5.5 | 4.7 | 13.69 | 14.15 | 13.91 | 12.26 |
Table 4
EDS surface composition analysis of anode materials from fresh and slight-overcharge cycling batteries"
元素 | 原子百分比/% | 质量分数/% | ||||||
---|---|---|---|---|---|---|---|---|
原始 | 4.3 V | 4.4 V | 4.5 V | 原始 | 4.3 V | 4.4 V | 4.5 V | |
C | 87.8 | 38.3 | 35.7 | 40.6 | 83.65 | 29.95 | 28.06 | 31.93 |
O | 10.0 | 44.6 | 48.9 | 40.7 | 12.75 | 46.47 | 51.04 | 42.64 |
F | 1.9 | 14.1 | 13.2 | 16.1 | 2.80 | 17.47 | 16.39 | 20.02 |
P | 0.3 | 2.8 | 2.2 | 2.6 | 0.81 | 5.66 | 4.50 | 5.20 |
S | 0.0 | 0.0 | 0.0 | 0.1 | 0.00 | 0.00 | 0.00 | 0.21 |
Ni | 0.0 | 0.1 | 0.0 | 0.0 | 0.00 | 0.46 | 0.00 | 0.00 |
1 | 来鑫, 陈权威, 顾黄辉, 等. 面向 "双碳" 战略目标的锂离子电池生命周期评价: 框架、方法与进展[J]. 机械工程学报, 2022, 58(22): 3-18. DOI: 10.3901/JME.2022.22.003. |
LAI X, CHEN Q W, GU H H, et al. Life cycle assessment of lithium-ion batteries for carbon-peaking and carbon-neutrality: Framework, methods, and progress[J]. Journal of Mechanical Engineering, 2022, 58(22): 3-18. DOI: 10.3901/JME.2022.22.003. | |
2 | 刘素贞, 陈晶晶, 张闯, 等. 基于区域电压的锂离子电池不均匀发热模型[J]. 电工技术学报, 2022, 37(21): 5627-5636. DOI: 10.19595/j.cnki.1000-6753.tces.211265. |
LIU S Z, CHEN J J, ZHANG C, et al. Regional voltage-based uneven heating model of lithium-ion battery[J]. Transactions of China Electrotechnical Society, 2022, 37(21): 5627-5636. DOI: 10.19595/j.cnki.1000-6753.tces.211265. | |
3 | LIU J L, WANG Z R, BAI J L. Influences of multi factors on thermal runaway induced by overcharging of lithium-ion battery[J]. Journal of Energy Chemistry, 2022, 70: 531-541. DOI: 10.1016/j.jechem.2022.03.011. |
4 | WANG Z P, YUAN J, ZHU X Q, et al. Overcharge-to-thermal-runaway behavior and safety assessment of commercial lithium-ion cells with different cathode materials: A comparison study[J]. Journal of Energy Chemistry, 2021, 55: 484-498. DOI: 10.1016/j.jechem.2020.07.028. |
5 | WANG P, YANG L, WANG H, et al. Temperature estimation from current and voltage measurements in lithium-ion battery systems[J]. Journal of Energy Storage, 2021, 34: 102133. DOI: 10.1016/j.est.2020.102133. |
6 | THOMAS J K, CRASTA H R, KAUSTHUBHA K, et al. Battery monitoring system using machine learning[J]. Journal of Energy Storage, 2021, 40: 102741. DOI: 10.1016/j.est.2021.102741. |
7 | 赖铱麟, 杨凯, 刘皓, 等. 锂离子电池安全预警方法综述[J]. 储能科学与技术, 2020, 9(6): 1926-1932. DOI: 10.19799/j.cnki.2095-4239.2020.0158. |
LAI Y L, YANG K, LIU H, et al. Lithium-ion battery safety warning methods review[J]. Energy Storage Science and Technology, 2020, 9(6): 1926-1932. DOI: 10.19799/j.cnki.2095-4239. 2020.0158. | |
8 | OUYANG M G, REN D S, LU L G, et al. Overcharge-induced capacity fading analysis for large format lithium-ion batteries with LiyNi1/3Co1/3Mn1/3O2 +LiyMn2O4 composite cathode[J]. Journal of Power Sources, 2015, 279: 626-635. DOI: 10.1016/j.jpowsour. 2015.01.051. |
9 | ZHOU J J, CHAO P P, ZHANG N T, et al. Analysis of lithium-ion battery micro-overcharge cycle damage mechanism based on electrochemical impedance spectroscopy[J]. E3S Web of Conferences, 2021, 261: 02076. DOI: 10.1051/e3sconf/202126102076. |
10 | YANG M J, YE Y J, YANG A J, et al. Comparative study on aging and thermal runaway of commercial LiFePO4/graphite battery undergoing slight overcharge cycling[J]. Journal of Energy Storage, 2022, 50: 104691. DOI: 10.1016/j.est.2022.104691. |
11 | LIU J L, PENG W, YANG M P, et al. Quantitative analysis of aging and detection of commercial 18650 lithium-ion battery under slight overcharging cycling[J]. Journal of Cleaner Production, 2022, 340: 130756. DOI: 10.1016/j.jclepro. 2022.130756. |
12 | LIU J L, DUAN Q L, MA M N, et al. Aging mechanisms and thermal stability of aged commercial 18650 lithium ion battery induced by slight overcharging cycling[J]. Journal of Power Sources, 2020, 445: 227263. DOI: 10.1016/j.jpowsour. 2019.227263. |
13 | BERNARDI D, PAWLIKOWSKI E, NEWMAN J. A general energy balance for battery systems[J]. Journal of the Electrochemical Society, 1985, 132(1): 5. DOI: 10.1149/1.2113792. |
14 | 常修亮, 李希超, 贾隆舟, 等. 过充循环老化电池产热特性[J]. 储能科学与技术, 2023, 12(3): 685-697. DOI: 10.19799/j.cnki.2095-4239.2022.0692. |
CHANG X L, LI X C, JIA L Z, et al. Heat generation characteristics of overcharged cyclic aging batteries[J]. Energy Storage Science and Technology, 2023, 12(3): 685-697. DOI: 10.19799/j.cnki.2095-4239.2022.0692. | |
15 | 王春林, 朱广焱, 张鹏博, 等. 弛豫时间分布函数应用于电化学阻抗谱分析[J]. 电源技术, 2021, 45(12): 1569-1572, 1593. DOI: 10.3969/j.issn.1002-087X.2021.12.013. |
WANG C L, ZHU G Y, ZHANG P B, et al. Application of distribution function of relaxation time in analyzing electrochemical impedance spectroscopy[J]. Chinese Journal of Power Sources, 2021, 45(12): 1569-1572, 1593. DOI: 10.3969/j.issn.1002-087X.2021.12.013. | |
16 | LU Y, ZHAO C Z, HUANG J Q, et al. The timescale identification decoupling complicated kinetic processes in lithium batteries[J]. Joule, 2022, 6(6): 1172-1198. DOI: 10.1016/j.joule.2022.05.005. |
17 | DUBARRY M, TRUCHOT C, LIAW B Y, et al. Evaluation of commercial lithium-ion cells based on composite positive electrode for plug-in hybrid electric vehicle applications. Part II. Degradation mechanism under 2C cycle aging[J]. Journal of Power Sources, 2011, 196(23): 10336-10343. DOI: 10.1016/j.jpowsour.2011.08.078. |
18 | PASTOR-FERNÁNDEZ C, UDDIN K, CHOUCHELAMANE G H, et al. A comparison between electrochemical impedance spectroscopy and incremental capacity-differential voltage as Li-ion diagnostic techniques to identify and quantify the effects of degradation modes within battery management systems[J]. Journal of Power Sources, 2017, 360: 301-318. DOI: 10.1016/j.jpowsour.2017.03.042. |
19 | SUN H, JIANG B, YOU H Z, et al. Quantitative analysis of degradation modes of lithium-ion battery under different operating conditions[J]. Energies, 2021, 14(2): 350. DOI: 10.3390/en14020350. |
20 | HAHN M, ROSENBACH D, KRIMALOWSKI A, et al. Investigating solid polymer and ceramic electrolytes for lithium-ion batteries by means of an extended Distribution of Relaxation Times analysis[J]. Electrochimica Acta, 2020, 344: 136060. DOI: 10.1016/j.electacta.2020.136060. |
21 | 张青松, 赵启臣. 过充循环对锂离子电池老化及安全性影响[J]. 高电压技术, 2020, 46(10): 3390-3397. DOI: 10.13336/j.1003-6520.hve.20200361. |
ZHANG Q S, ZHAO Q C. Effects of overcharge cycling on the aging and safety of lithium ion batteries[J]. High Voltage Engineering, 2020, 46(10): 3390-3397. DOI: 10.13336/j.1003-6520.hve.20200361. | |
22 | 张闯, 王泽山, 刘素贞, 等. 基于电化学阻抗谱的锂离子电池过放电诱发内短路的检测方法[J]. 电工技术学报, 2023, 38(23): 6279-6291, 6344. DOI: 10.19595/j.cnki.1000-6753.tces.221545. |
ZHANG C, WANG Z S, LIU S Z, et al. Detection method of overdischarge-induced internal short circuit in lithium-ion batteries based on electrochemical impedance spectroscopy[J]. Transactions of China Electrotechnical Society, 2023, 38(23): 6279-6291, 6344. DOI: 10.19595/j.cnki.1000-6753.tces.221545. | |
23 | LYU N W, JIN Y, XIONG R, et al. Real-time overcharge warning and early thermal runaway prediction of Li-ion battery by online impedance measurement[J]. IEEE Transactions on Industrial Electronics, 2022, 69(2): 1929-1936. DOI: 10.1109/TIE.2021.3062267. |
24 | BARRÉ A, DEGUILHEM B, GROLLEAU S, et al. A review on lithium-ion battery ageing mechanisms and estimations for automotive applications[J]. Journal of Power Sources, 2013, 241: 680-689. DOI: 10.1016/j.jpowsour.2013.05.040. |
25 | 许卓, 李希超, 贾隆舟, 等. 过充循环对锂离子电池容量衰减及安全性影响[J]. 储能科学与技术, 2022, 11(12): 3978-3986. DOI: 10.19799/j.cnki.2095-4239.2022.0405. |
XU Z, LI X C, JIA L Z, et al. Effect of overcharge cycle on capacity attenuation and safety of lithium-ion batteries[J]. Energy Storage Science and Technology, 2022, 11(12): 3978-3986. DOI: 10.19799/j.cnki.2095-4239.2022.0405. | |
26 | 俎梦杨, 张梦, 李子坤, 等. 高镍NCA、NCM及NCMA材料循环容量衰减机理研究[J]. 储能科学与技术, 2023, 12(1): 51-60. DOI: 10.19799/j.cnki.2095-4239.2022.0434. |
ZU M Y, ZHANG M, LI Z K, et al. Cycle performance and degradation mechanism of Ni-rich NCA, NCM, and NCMA[J]. Energy Storage Science and Technology, 2023, 12(1): 51-60. DOI: 10.19799/j.cnki.2095-4239.2022.0434. | |
27 | SARASKETA-ZABALA E, AGUESSE F, VILLARREAL I, et al. Understanding lithium inventory loss and sudden performance fade in cylindrical cells during cycling with deep-discharge steps[J]. The Journal of Physical Chemistry C, 2015, 119(2): 896-906. DOI: 10.1021/jp510071d. |
28 | 栗志展, 秦金磊, 梁嘉宁, 等. 高镍三元层状锂离子电池正极材料: 研究进展、挑战及改善策略[J]. 储能科学与技术, 2022, 11(9): 2900-2920. DOI: 10.19799/j.cnki.2095-4239.2021.0595. |
LI Z Z, QIN J L, LIANG J N, et al. High-nickel ternary layered cathode materials for lithium-ion batteries: Research progress, challenges and improvement strategies[J]. Energy Storage Science and Technology, 2022, 11(9): 2900-2920. DOI: 10.19799/j.cnki.2095-4239.2021.0595. | |
29 | JIN C B, LIU T F, SHENG O W, et al. Rejuvenating dead lithium supply in lithium metal anodes by iodine redox[J]. Nature Energy, 2021, 6: 378-387. DOI: 10.1038/s41560-021-00789-7. |
30 | 朱晓庆, 王震坡, WANG Hsin, 等. 锂离子动力电池热失控与安全管理研究综述[J]. 机械工程学报, 2020, 56(14): 91-118. DOI: 10.3901/JME.2020.14.091. |
ZHU X Q, WANG Z P, WANG H, et al. Review of thermal runaway and safety management for lithium-ion traction batteries in electric vehicles[J]. Journal of Mechanical Engineering, 2020, 56(14): 91-118. DOI: 10.3901/JME.2020.14.091. | |
31 | 刘先庆, 王长宏, 吴婷婷. 锂离子电池老化机理及综合利用综述[J]. 电池, 2022, 52(2): 223-227. DOI: 10.19535/j.1001-1579.2022.02.024. |
LIU X Q, WANG C H, WU T T. Review of aging mechanism and comprehensive use of Li-ion battery[J]. Dianchi(Battery Bimonthly), 2022, 52(2): 223-227. DOI: 10.19535/j.1001-1579.2022.02.024. |
[1] | Zhonglin SUN, Jiabo LI, Di TIAN, Zhixuan WANG, Xiaojing XING. Useful life prediction for lithium-ion batteries based on COA-LSTM and VMD [J]. Energy Storage Science and Technology, 2024, 13(9): 3254-3265. |
[2] | Jizhong LU, Simin PENG, Xiaoyu LI. State-of-health estimation of lithium-ion batteries based on multifeature analysis and LSTM-XGBoost model [J]. Energy Storage Science and Technology, 2024, 13(9): 2972-2982. |
[3] | Xuefeng HU, Xianlei CHANG, Xiaoxiao LIU, Wei XU, Wenbin ZHANG. SOC estimation of lithium-ion batteries under multiple temperatures conditions based on MIARUKF algorithm [J]. Energy Storage Science and Technology, 2024, 13(9): 2983-2994. |
[4] | Siyuan SHEN, Yakun LIU, Donghuang LUO, Yujun LI, Wei HAO. Transient overvoltage protection design and circuit development for energy storage lithium-ion battery modules [J]. Energy Storage Science and Technology, 2024, 13(9): 3277-3286. |
[5] | Yuan CHEN, Siyuan ZHANG, Yujing CAI, Xiaohe HUANG, Yanzhong LIU. State-of-health estimation of lithium batteries based on polynomial feature extension of the CNN-transformer model [J]. Energy Storage Science and Technology, 2024, 13(9): 2995-3005. |
[6] | Ruihe XING, Suting WENG, Yejing LI, Jiayi ZHANG, Hao ZHANG, Xuefeng WANG. AI-assisted battery material characterization and data analysis [J]. Energy Storage Science and Technology, 2024, 13(9): 2839-2863. |
[7] | Hongsheng GUAN, Cheng QIAN, Bo SUN, Yi REN. Predicting capacity degradation trajectory for lithium-ion batteries under limited data conditions [J]. Energy Storage Science and Technology, 2024, 13(9): 3084-3093. |
[8] | Xue KE, Huawei HONG, Peng ZHENG, Zhicheng LI, Peixiao FAN, Jun YANG, Yuzheng GUO, Chunguang KUAI. Estimating lithium-ion battery health using automatic feature extraction and channel attention mechanisms for multi-timescale modeling [J]. Energy Storage Science and Technology, 2024, 13(9): 3059-3071. |
[9] | Chengwen TIAN, Bingxiang SUN, Xinze ZHAO, Zhicheng FU, Shichang MA, Bo ZHAO, Xubo ZHANG. Accelerated life prediction of lithium-ion batteries using data-driven approaches [J]. Energy Storage Science and Technology, 2024, 13(9): 3103-3111. |
[10] | Qingbo LI, Maohui ZHANG, Ying LUO, Taolin LYU, Jingying XIE. Lithium-ion battery state of charge estimation based on equivalent circuit model [J]. Energy Storage Science and Technology, 2024, 13(9): 3072-3083. |
[11] | Zhifeng HE, Yuanzhe TAO, Yonggang HU, Qicong Wang, Yong YANG. Machine learning-enhanced electrochemical impedance spectroscopy for lithium-ion battery research [J]. Energy Storage Science and Technology, 2024, 13(9): 2933-2951. |
[12] | Bingxiang SUN, Xin YANG, Xingzhen ZHOU, Shichang MA, Zhihao WANG, Weige ZHANG. Comparative parametric study of metaheuristics based on impedance modeling for lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(9): 2952-2962. |
[13] | Yufeng HUANG, Huanchao LIANG, Lei XU. Kalman filter optimize Transformer method for state of health prediction on lithium-ion battery [J]. Energy Storage Science and Technology, 2024, 13(8): 2791-2802. |
[14] | Zheng CHEN, Bo YANG, Zhigang ZHAO, Jiangwei SHEN, Renxin XIAO, Xuelei XIA. State of charge estimation considering lithium battery temperature and aging [J]. Energy Storage Science and Technology, 2024, 13(8): 2813-2822. |
[15] | Jingjing LEI, Zehao LI, Binbin CHEN, Denggao HUANG. Estimation of internal battery temperature based on electrochemical impedance spectroscopy [J]. Energy Storage Science and Technology, 2024, 13(8): 2823-2834. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||