Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (6): 2193-2199.doi: 10.19799/j.cnki.2095-4239.2024.1203
• Energy Storage Materials and Devices • Previous Articles Next Articles
Wenjie ZHANG1(), Dongsheng REN2, Yu WU1(
), Xinyu RUI2(
), Xiang LIU3(
), Xuning FENG2(
), Languang LU2(
)
Received:
2024-12-18
Revised:
2024-12-31
Online:
2025-06-28
Published:
2025-06-27
Contact:
Yu WU, Xinyu RUI, Xiang LIU, Xuning FENG, Languang LU
E-mail:792442831@qq.com;wuyu@bit.edu.cn;rxy19@tsinghua.org.cn;xiangliu@buaa.edu.cn;fxn17@mail.tsinghua.edu.cn;lulg@mail.tsinghua.edu.cn
CLC Number:
Wenjie ZHANG, Dongsheng REN, Yu WU, Xinyu RUI, Xiang LIU, Xuning FENG, Languang LU. Thermal stability of key materials in Li10GeP12S2-based all-solid-state batteries[J]. Energy Storage Science and Technology, 2025, 14(6): 2193-2199.
1 | LIU H X, LIU C, ZHOU Y H, et al. The application of Al2O3 in the separators and solid electrolytes of lithium-ion battery: A review[J]. Energy Storage Materials, 2024, 71: 103575. DOI: 10.1016/j.ensm.2024.103575. |
2 | MATSUMOTO F, YAMADA M, TSUTA M, et al. Review of the structure and performance of through-holed anodes and cathodes prepared with a picosecond pulsed laser for lithium-ion batteries[J]. International Journal of Extreme Manufacturing, 2023, 5(1): 012001. DOI: 10.1088/2631-7990/aca1f0. |
3 | XIAO J W, ZHANG B, LIU J X, et al. NaSICON-type materials for lithium-ion battery applications: Progress and challenges[J]. Nano Energy, 2024, 127: 109730. DOI: 10.1016/j.nanoen. 2024.109730. |
4 | 武美玲, 牛磊, 李世友, 等. 正极预锂化添加剂用于锂离子电池的研究进展[J]. 储能科学与技术, 2024, 13(3): 759-769. DOI: 10.19799/j.cnki.2095-4239.2023.0809. |
WU M L, NIU L, LI S Y, et al. Research progress on cathode prelithium additives used in lithium-ion batteries[J]. Energy Storage Science and Technology, 2024, 13(3): 759-769. DOI: 10.19799/j.cnki.2095-4239.2023.0809. | |
5 | YU X Q, CHEN R S, GAN L Y, et al. Battery safety: From lithium-ion to solid-state batteries[J]. Engineering, 2023, 21: 9-14. DOI: 10.1016/j.eng.2022.06.022. |
6 | 王特, 蒋立, 田晓录, 等. 锂离子电池安全材料的研究进展[J]. 化工进展, 2021, 40(6): 3132-3142. DOI: 10.16085/j.issn.1000-6613.2020-1416. |
WANG T, JIANG L, TIAN X L, et al. Research progress of lithium-ion battery safety materials[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3132-3142. DOI: 10.16085/j.issn.1000-6613.2020-1416. | |
7 | FENG X N, REN D S, HE X M, et al. Mitigating the thermal runaway of lithium-ion batteries[J]. Joule, 2020, 4(4): 743-770. DOI: 10.1016/j.joule.2020.02.010. |
8 | WU Y, ZHANG W J, LI Y L, et al. Solid-state interphases design for high-safety, high-voltage and long-cyclability practical batteries via ethylene carbonate-free electrolytes[J]. Energy Storage Materials, 2024, 65: 103165. DOI: 10.1016/j.ensm. 2023.103165. |
9 | 申菲. 锂离子电池安全性及预警措施研究[J]. 储能科学与技术, 2024, 13(10): 3515-3517. DOI: 10.19799/j.cnki.2095-4239.2024.0929. |
SHEN F. Research on the safety and early warning measures of the lithium-ion battery[J]. Energy Storage Science and Technology, 2024, 13(10): 3515-3517. DOI: 10.19799/j.cnki.2095-4239.2024.0929. | |
10 | ZHANG G X, WEI X Z, WANG X Y, et al. Lithium-ion battery sudden death: Safety degradation and failure mechanism[J]. eTransportation, 2024, 20: 100333. DOI: 10.1016/j.etran.2024.100333. |
11 | ZHANG Z, HAN W Q. From liquid to solid-state lithium metal batteries: Fundamental issues and recent developments[J]. Nano-Micro Letters, 2023, 16(1): 24. DOI: 10.1007/s40820-023-01234-y. |
12 | JANEK J, ZEIER W G. Challenges in speeding up solid-state battery development[J]. Nature Energy, 2023, 8(3): 230-240. DOI: 10.1038/s41560-023-01208-9. |
13 | REN D S, LU L G, HUA R, et al. Challenges and opportunities of practical sulfide-based all-solid-state batteries[J]. eTransportation, 2023, 18: 100272. DOI: 10.1016/j.etran.2023.100272. |
14 | 吴敬华, 姚霞银. 基于硫化物固体电解质全固态锂电池界面特性研究进展[J]. 储能科学与技术, 2020, 9(2): 501-514. DOI: 10.19799/j.cnki.2095-4239.2020.0065. |
WU J H, YAO X Y. Recent progress in the interfaces of all-solid-state lithium batteries based on sulfide electrolytes[J]. Energy Storage Science and Technology, 2020, 9(2): 501-514. DOI: 10.19799/j.cnki.2095-4239.2020.0065. | |
15 | RUI X Y, HUA R, REN D S, et al. In situ polymerization facilitates practical high-safety quasi-solid-state batteries[J]. Advanced Materials, 2024, 36(27): 2402401. DOI: 10.1002/adma.202402401. |
16 | WU Y J, ZHANG Z Q, ZHANG Q G, et al. Industrialization challenges for sulfide-based all solid state battery[J]. eTransportation, 2024, 22: 100371. DOI: 10.1016/j.etran.2024. 100371. |
17 | LIN J Y, CHEN S, LI J Y, et al. Chlorine-rich lithium argyrodites enables superior performances for solid-state Li-Se batteries at wide temperature range[J]. Rare Metals, 2022, 41(12): 4065-4074. DOI: 10.1007/s12598-022-02093-z. |
18 | LIU L H, LYU J, MO J S, et al. Flexible, high-voltage, ion-conducting composite membranes with 3D aramid nanofiber frameworks for stable all-solid-state lithium metal batteries[J]. Science China Materials, 2020, 63(5): 703-718. DOI: 10.1007/s40843-019-1240-2. |
19 | LUO Y, MA R, GONG Z, et al. Recent research progresses of solid-state lithium-sulfur batteries[J]. Journal of Electrochemistry, 2023, 29(3): DOI:10.13208/j.electrochem.2217007. |
20 | 赵争光, 陈振营, 翟光群, 等. Sc/O掺杂硫化物固态电解质的制备及全固态电池性能[J]. 储能科学与技术, 2023, 12(8): 2412-2423. DOI: 10.19799/j.cnki.2095-4239.2023.0236. |
ZHAO Z G, CHEN Z Y, ZHAI G Q, et al. Preparation of the Sc/O-doped sulfide electrolyte for all-solid-state batteries[J]. Energy Storage Science and Technology, 2023, 12(8): 2412-2423. DOI: 10.19799/j.cnki.2095-4239.2023.0236. | |
21 | WU Y J, WANG S, LI H, et al. Progress in the thermal stability of all-solid-state-Li-ion-batteries[J]. InfoMat, 2021, 3(8): 827-853. DOI: 10.1002/inf2.12224. |
22 | STÖFFLER H, ZINKEVICH T, YAVUZ M, et al. Amorphous versus crystalline Li3PS4: Local structural changes during synthesis and Li ion mobility[J].The Journal of Physical Chemistry C, 2019, 123(16):10280-10290.DOI:10.1021/acs.jpcc.9b01425. |
23 | KIM T, KIM K, LEE S, et al. Thermal runaway behavior of Li6PS5Cl solid electrolytes for LiNi0.8Co0.1Mn0.1O2 and LiFePO4 in all-solid-state batteries[J]. Chemistry of Materials, 2022, 34(20): 9159-9171. DOI: 10.1021/acs.chemmater.2c02106. |
24 | RUI X Y, REN D S, LIU X, et al. Distinct thermal runaway mechanisms of sulfide-based all-solid-state batteries[J]. Energy & Environmental Science, 2023, 16(8): 3552-3563. DOI: 10.1039/D3EE00084B. |
25 | WU Y J, XU J, LU P S, et al. Thermal stability of the sulfide solid electrolyte with lithium metal[J]. Advanced Energy Materials, 2023, 13(36): 2301336. DOI: 10.1002/aenm.202301336. |
26 | VISHNUGOPI B S, HASAN M T, ZHOU H W, et al. Interphases and electrode crosstalk dictate the thermal stability of solid-state batteries[J]. ACS Energy Letters, 2023, 8(1): 398-407. DOI: 10.1021/acsenergylett.2c02443. |
27 | YANG S J, HU J K, JIANG F N, et al. Oxygen-induced thermal runaway mechanisms of Ah-level solid-state lithium metal pouch cells[J]. eTransportation, 2023, 18: 100279. DOI: 10.1016/j.etran. 2023.100279. |
[1] | Chencheng XU, Zhan WANG, Shuang LI, Jiangmin JIANG, Zhicheng JU. Research progress and engineering application prospects of prelithiation technology for lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(3): 930-946. |
[2] | Tong LIU, Guiting YANG, Hui BI, Yueni MEI, Shuo LIU, Yongji GONG, Wenlei LUO. Recent progress in high-energy and high-power lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(1): 54-76. |
[3] | Wenhao GONG, Meng LI, Tao ZHANG, Ruotao ZHANG, Yanxia LIU. Development and fabrication of high-energy and long-endurance Li-ion batteries for UAVs [J]. Energy Storage Science and Technology, 2024, 13(8): 2550-2558. |
[4] | Jianhang YANG, Wenting FENG, Junwei HAN, Xinru WEI, Chenyu MA, Changming MAO, Linjie ZHI, Debin KONG. Recent advances in rechargeable Li/Na-Cl2 batteries: From material construction to performance evaluation [J]. Energy Storage Science and Technology, 2024, 13(6): 1824-1834. |
[5] | Yaxuan XIONG, Xincheng YIN, Chaoyu SONG, Jing REN, Cancan ZHANG, Yuting WU, Yulong DING. Preparation and performance evaluation of sludge incineration residue/potassium nitrate phase-change composites [J]. Energy Storage Science and Technology, 2024, 13(10): 3357-3368. |
[6] | Miao LI, Yongli YU, Jianyang WU, Min LEI, Henghui ZHOU. Design of high-energy-density LiFePO4 cathode materials [J]. Energy Storage Science and Technology, 2023, 12(7): 2045-2058. |
[7] | Tao YIN, Longzhou JIA, Xiuliang CHANG, Zuoqiang DAI, Lili ZHENG. Research on thermal safety of soft-pack LiFePO4 battery after high-voltage float charge [J]. Energy Storage Science and Technology, 2022, 11(8): 2546-2555. |
[8] | LIU Hangxin, CHEN Xiantao, SUN Qiang, ZHAO Chenxi. Cycle performance characteristics of soft pack lithium-ion batteries under vacuum environment [J]. Energy Storage Science and Technology, 2022, 11(6): 1806-1815. |
[9] | ZHOU Weidong, HUANG Qiu, XIE Xiaoxin, CHEN Kejun, LI Wei, QIU Jieshan. Research progress of polymer electrolyte for solid state lithium batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1788-1805. |
[10] | Ce ZHANG, Siwu LI, Jia XIE. Research progress on the prelithiation technology of alloy-type anodes [J]. Energy Storage Science and Technology, 2022, 11(5): 1383-1400. |
[11] | Yun TANG, Fang YUE, Kaimo GUO, Lanchun LI, Wangsong KE, Wei CHEN. Analysis of the development trend and the innovation ability of an all-solid-state lithium battery technology [J]. Energy Storage Science and Technology, 2022, 11(1): 359-369. |
[12] | Wenting JIN, Mansheng LIAO, Ji HUANG, Zidong WEI. The technological trend of high energy density Li-ion batteries for vehicles [J]. Energy Storage Science and Technology, 2022, 11(1): 350-358. |
[13] | Yanming CUI, Zhihua ZHANG, Yuanqiao HUANG, Jiu LIN, Xiayin YAO, Xiaoxiong XU. Prototype all-solid-state battery electrodes preparation and assembly technology [J]. Energy Storage Science and Technology, 2021, 10(3): 836-847. |
[14] | Mengdie YAN, Hui LI, Min LING, Huilin PAN, Qiang ZHANG. Brief review of progress in lithium-sulfur batteries based on dissolution-deposition reactions [J]. Energy Storage Science and Technology, 2020, 9(6): 1606-1613. |
[15] |
ZOU Jian, WANG Bojun, YANG Jiachao, NIU Xiaobin, WANG Liping.
Electrochemical performance of β-Li0.3V2O5 as a lithium-ion battery cathode material
[J]. Energy Storage Science and Technology, 2020, 9(2): 353-360.
|
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||