Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (6): 2540-2554.doi: 10.19799/j.cnki.2095-4239.2025.0001
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Yonglong DUAN1(), Xia HUA1, Zijiao HAN2, Bing XIE2, Shubo HU2, Aikui LI1(
)
Received:
2025-01-02
Revised:
2025-01-22
Online:
2025-06-28
Published:
2025-06-27
Contact:
Aikui LI
E-mail:961750695@qq.com;liaikui@dlut.edu.cn
CLC Number:
Yonglong DUAN, Xia HUA, Zijiao HAN, Bing XIE, Shubo HU, Aikui LI. Research progress on capacity decay and inhibition technology of all-vanadium flow batteries[J]. Energy Storage Science and Technology, 2025, 14(6): 2540-2554.
1 | SKYLLAS-KAZACOS M, RYCHCIK M, ROBINS R G, et al. New all-vanadium redox flow cell[J]. Journal of the Electrochemical Society, 1986, 133(5): 1057-1058. DOI: 10.1149/1.2108706. |
2 | SKYLLAS-KAZACOS M, CAO L Y, KAZACOS M, et al. Vanadium electrolyte studies for the vanadium redox battery-A review[J]. ChemSusChem, 2016, 9(13): 1521-1543. DOI: 10.1002/cssc. 201600102. |
3 | 朱兆武, 张旭堃, 苏慧, 等. 全钒液流电池提高电解液浓度的研究与应用现状[J]. 储能科学与技术, 2022, 11(11): 3439-3446. DOI: 10.19799/j.cnki.2095-4239.2022.0329. |
ZHU Z W, ZHANG X K, SU H, et al. Research and application of increasing electrolyte concentration in all vanadium redox flow battery[J]. Energy Storage Science and Technology, 2022, 11(11): 3439-3446. DOI: 10.19799/j.cnki.2095-4239.2022.0329. | |
4 | 戴纹硕, 郭骞远, 陈向南, 等. 全钒液流电池双极板材料研究进展[J]. 储能科学与技术, 2024, 13(4): 1310-1325. DOI: 10.19799/j.cnki. 2095-4239.2023.0882. |
DAI W S, GUO Q Y, CHEN X N, et al. Research progress of bipolar plate materials for vanadium flow battery[J]. Energy Storage Science and Technology, 2024, 13(4): 1310-1325. DOI: 10.19799/j.cnki.2095-4239.2023.0882. | |
5 | LU M Y, YANG W W, BAI X S, et al. Performance improvement of a vanadium redox flow battery with asymmetric electrode designs[J]. Electrochimica Acta, 2019, 319: 210-226. DOI: 10.1016/j.electacta.2019.06.158. |
6 | 赵丽娜, 肖伟, 刘建国, 等. 全钒液流电池离子传导膜研究进展[J]. 化工新型材料, 2019, 47(5): 227-230. |
ZHAO L N, XIAO W, LIU J G, et al. Research progress of ion conducting membrane in VFB[J]. New Chemical Materials, 2019, 47(5): 227-230. | |
7 | PICHUGOV R, LOKTIONOV P, PUSTOVALOVA A, et al. Restoring capacity and efficiency of vanadium redox flow battery via controlled adjustment of electrolyte composition by electrolysis cell[J]. Journal of Power Sources, 2023, 569: 233013. DOI: 10.1016/j.jpowsour.2023.233013. |
8 | CHEN Y X, BAO J, XU Z J, et al. A hybrid analytical and numerical model for cross-over and performance decay in a unit cell vanadium redox flow battery[J]. Journal of Power Sources, 2023, 578: 233210. DOI: 10.1016/j.jpowsour.2023.233210. |
9 | WEI Z B, BHATTARAI A, ZOU C F, et al. Real-time monitoring of capacity loss for vanadium redox flow battery[J]. Journal of Power Sources, 2018, 390: 261-269. DOI: 10.1016/j.jpowsour. 2018.04.063. |
10 | LOKTIONOV P, PUSTOVALOVA A, PICHUGOV R, et al. Quantifying effect of faradaic imbalance and crossover on capacity fade of vanadium redox flow battery[J]. Electrochimica Acta, 2024, 485: 144047. DOI: 10.1016/j.electacta.2024.144047. |
11 | KHAKI B, DAS P. Voltage loss and capacity fade reduction in vanadium redox battery by electrolyte flow control[J]. Electrochimica Acta, 2022, 405: 139842. DOI: 10.1016/j.electacta. 2022.139842. |
12 | RODBY K E, CARNEY T J, ASHRAF GANDOMI Y, et al. Assessing the levelized cost of vanadium redox flow batteries with capacity fade and rebalancing[J]. Journal of Power Sources, 2020, 460: 227958. DOI: 10.1016/j.jpowsour.2020.227958. |
13 | OREIRO S N, BENTIEN A, SLOTH J, et al. Crossover analysis in a commercial 6 kW/43kAh vanadium redox flow battery utilizing anion exchange membrane[J]. Chemical Engineering Journal, 2024, 490: 151947. DOI: 10.1016/j.cej.2024.151947. |
14 | SUN C X, CHEN J, ZHANG H M, et al. Investigations on transfer of water and vanadium ions across Nafion membrane in an operating vanadium redox flow battery[J]. Journal of Power Sources, 2010, 195(3): 890-897. DOI: 10.1016/j.jpowsour.2009. 08.041. |
15 | XIONG R, XIONG B Y, ZHANG Q Y, et al. Capacity fading model of vanadium redox flow battery considering water molecules migration[J]. International Journal of Green Energy, 2022, 19(15): 1613-1622. DOI: 10.1080/15435075.2021.2015599. |
16 | OH K, MOAZZAM M, GWAK G, et al. Water crossover phenomena in all-vanadium redox flow batteries[J]. Electrochimica Acta, 2019, 297: 101-111. DOI: 10.1016/j.electacta.2018.11.151. |
17 | WANG Y P, MU A L, WANG W Y, et al. A review of capacity decay studies of all-vanadium redox flow batteries: Mechanism and state estimation[J]. ChemSusChem, 2024, 17(14): e202301787. DOI: 10.1002/cssc.202301787. |
18 | LEE J, MUYA J T, CHUNG H, et al. Unraveling V(V)-V(IV)-V(III)-V(II) redox electrochemistry in highly concentrated mixed acidic media for a vanadium redox flow battery: Origin of the parasitic hydrogen evolution reaction[J]. ACS Applied Materials & Interfaces, 2019, 11(45): 42066-42077. DOI: 10.1021/acsami. 9b12676. |
19 | PULESTON T, SERRA M, COSTA-CASTELLÓ R. Vanadium redox flow battery capacity loss mitigation strategy based on a comprehensive analysis of electrolyte imbalance effects[J]. Applied Energy, 2024, 355: 122271. DOI: 10.1016/j.apenergy. 2023.122271. |
20 | JAFARI M, SAKTI A, BOTTERUD A. Optimization of electrolyte rebalancing in vanadium redox flow batteries[J]. IEEE Transactions on Energy Conversion, 2022, 37(1): 748-751. DOI: 10.1109/TEC.2021.3136769. |
21 | POLI N, SCHÄFFER M, TROVÒ A, et al. Novel electrolyte rebalancing method for vanadium redox flow batteries[J]. Chemical Engineering Journal, 2021, 405: 126583. DOI: 10.1016/j.cej. 2020.126583. |
22 | JUNG H, LEE S. A study on capacity and state of charge estimation of VRFB systems using cumulated charge and electrolyte volume under rebalancing conditions[J]. Energies, 2023, 16(5): 2478. DOI: 10.3390/en16052478. |
23 | 葛灵, 刘涛, 张一敏, 等. 硫-磷混合酸全钒电解液设计及电化学性能研究[J]. 中国有色冶金, 2023, 52(5): 68-75. DOI: 10.19612/j.cnki.cn11-5066/tf.2023.05.008. |
GE L, LIU T, ZHANG Y M, et al. Investigations on electrochemical performance of sulfuric-phosphoric mixed acid full vanadium electrolyte[J]. China Nonferrous Metallurgy, 2023, 52(5): 68-75. DOI: 10.19612/j.cnki.cn11-5066/tf.2023.05.008. | |
24 | CHOI C, KIM S, KIM R, et al. A review of vanadium electrolytes for vanadium redox flow batteries[J]. Renewable and Sustainable Energy Reviews, 2017, 69: 263-274. DOI: 10.1016/j.rser.2016. 11.188. |
25 | WANG K, ZHANG Y N, LIU L, et al. Broad temperature adaptability of vanadium redox flow battery-Part 3: The effects of total vanadium concentration and sulfuric acid concentration[J]. Electrochimica Acta, 2018, 259: 11-19. DOI: 10.1016/j.electacta. 2017.10.148. |
26 | TANG A, BAO J, SKYLLAS-KAZACOS M. Thermal modelling of battery configuration and self-discharge reactions in vanadium redox flow battery[J]. Journal of Power Sources, 2012, 216: 489-501. DOI: 10.1016/j.jpowsour.2012.06.052. |
27 | BADRINARAYANAN R, ZHAO J Y, TSENG K J, et al. Extended dynamic model for ion diffusion in all-vanadium redox flow battery including the effects of temperature and bulk electrolyte transfer[J]. Journal of Power Sources, 2014, 270: 576-586. DOI: 10.1016/j.jpowsour.2014.07.128. |
28 | KARRECH A. Large-scale all-climate vanadium batteries[J]. Applied Energy, 2024, 355: 122324. DOI: 10.1016/j.apenergy. 2023.122324. |
29 | 王瑄, 叶强. 全钒液流电池电堆局部供液不足导致副反应加剧的现象[J]. 储能科学与技术, 2022, 11(5): 1455-1467. DOI: 10.19799/j.cnki.2095-4239.2021.0578. |
WANG X, YE Q. The aggravation of side reactions caused by insufficient localized liquid supply in an all-vanadium redox flow battery stack[J]. Energy Storage Science and Technology, 2022, 11(5): 1455-1467. DOI: 10.19799/j.cnki.2095-4239.2021.0578. | |
30 | MA T, HUANG Z B, LI B, et al. Effect of operating conditions on the capacity of vanadium redox flow batteries[J]. Journal of the Electrochemical Society, 2024, 171(6): 060503. DOI: 10.1149/1945-7111/ad510d. |
31 | LUO Q T, LI L Y, NIE Z M, et al. In-situ investigation of vanadium ion transport in redox flow battery[J]. Journal of Power Sources, 2012, 218: 15-20. DOI: 10.1016/j.jpowsour.2012.06.066. |
32 | CECCHETTI M, TOJA F, CASALEGNO A, et al. A comprehensive experimental and modelling approach for the evaluation of cross-over fluxes in vanadium redox flow battery[J]. Journal of Energy Storage, 2023, 68: 107846. DOI: 10.1016/j.est.2023.107846. |
33 | ZAREI-JELYANI M, LOGHAVI M M, BABAIEE M, et al. The significance of charge and discharge current densities in the performance of vanadium redox flow battery[J]. Electrochimica Acta, 2023, 443: 141922. DOI: 10.1016/j.electacta.2023.141922. |
34 | 李君涛, 史小虎, 余龙海, 等. 正负极电解液对钒电池能量衰减的影响研究[J]. 电源技术, 2017, 41(12): 1757-1759. |
LI J T, SHI X H, YU L H, et al. Study on effect of cathode and anode electrolyte on energy attenuation of vanadium battery[J]. Chinese Journal of Power Sources, 2017, 41(12): 1757-1759. | |
35 | CHEN L M, LIU T, ZHANG Y M, et al. Mitigating capacity decay by adding carbohydrate in the negative electrolyte of vanadium redox flow battery[J]. Energies, 2022, 15(7): 2454. DOI: 10.3390/en15072454. |
36 | HOU B X, CUI X M, CHEN Y G. Effect of polyacrylic acid on the thermal stability and electrochemical performance of the positive electrolyte for all-vanadium redox flow battery[J]. Rare Metal Materials and Engineering, 2019, 48(10): 3149-3154. |
37 | YAN L G, LI D, LI S Q, et al. Balancing osmotic pressure of electrolytes for nanoporous membrane vanadium redox flow battery with a draw solute[J]. ACS Applied Materials & Interfaces, 2016, 8(51): 35289-35297. DOI: 10.1021/acsami.6b12068. |
38 | YE J Y, YUAN D, DING M, et al. A cost-effective nafion/lignin composite membrane with low vanadium ion permeation for high performance vanadium redox flow battery[J]. Journal of Power Sources, 2021, 482: 229023. DOI: 10.1016/j.jpowsour.2020.229023. |
39 | JIANG B, WU L T, YU L H, et al. A comparative study of Nafion series membranes for vanadium redox flow batteries[J]. Journal of Membrane Science, 2016, 510: 18-26. DOI: 10.1016/j.memsci. 2016.03.007. |
40 | WANG Z Y, REN J Y, SUN J, et al. The anion conductivity of acid-doped polybenzimidazole membrane and utilization in mitigating the capacity decay of vanadium redox flow battery stacks[J]. Chemical Engineering Journal, 2023, 474: 145621. DOI: 10.1016/j.cej.2023.145621. |
41 | SHI Y, EZE C K, XIONG B Y, et al. Recent development of membrane for vanadium redox flow battery applications: A review[J]. Applied Energy, 2019, 238: 202-224. DOI: 10.1016/j.apenergy. 2018.12.087. |
42 | MA X K, ZHANG H M, SUN C X, et al. An optimal strategy of electrolyte flow rate for vanadium redox flow battery[J]. Journal of Power Sources, 2012, 203: 153-158. DOI: 10.1016/j.jpowsour. 2011.11.036. |
43 | TANG A, BAO J, SKYLLAS-KAZACOS M. Studies on pressure losses and flow rate optimization in vanadium redox flow battery[J]. Journal of Power Sources, 2014, 248: 154-162. DOI: 10.1016/j.jpowsour.2013.09.071. |
44 | KARRECH A, REGENAUER-LIEB K, ABBASSI F. Vanadium flow batteries at variable flow rates[J]. Journal of Energy Storage, 2022, 45: 103623. DOI: 10.1016/j.est.2021.103623. |
45 | SONG Y X, LI X R, XIONG J, et al. Electrolyte transfer mechanism and optimization strategy for vanadium flow batteries adopting a Nafion membrane[J]. Journal of Power Sources, 2020, 449: 227503. DOI: 10.1016/j.jpowsour.2019.227503. |
46 | AGAR E, BENJAMIN A, DENNISON C R, et al. Reducing capacity fade in vanadium redox flow batteries by altering charging and discharging currents[J]. Journal of Power Sources, 2014, 246: 767-774. DOI: 10.1016/j.jpowsour.2013.08.023. |
47 | YANG W W, YAN F Y, QU Z G, et al. Effect of various strategies of soc-dependent operating current on performance of a vanadium redox flow battery[J]. Electrochimica Acta, 2018, 259: 772-782. DOI: 10.1016/j.electacta.2017.10.201. |
48 | HUANG Z B, LIU Y L, XIE X, et al. Experimental validation of side reaction on capacity fade of vanadium redox flow battery[J]. Journal of the Electrochemical Society, 2024, 171(1): 010521. DOI: 10.1149/1945-7111/ad1ec8. |
49 | LU M Y, YANG W W, DENG Y M, et al. Mitigating capacity decay and improving charge-discharge performance of a vanadium redox flow battery with asymmetric operating conditions[J]. Electrochimica Acta, 2019, 309: 283-299. DOI: 10.1016/j.electacta. 2019.04.032. |
[1] | Hong ZHANG, Jinzhong LI, Xin LI, Yuan ZHANG. Parallel control of vanadium flow battery considering state of health [J]. Energy Storage Science and Technology, 2025, 14(6): 2442-2450. |
[2] | Xiaohu SHI, Yixin HUANG, Tao ZOU, Yiting YUAN. Sulfonated polybenzimidazole membrane crosslinked by a star crosslinker with stable operation of high-performance all-vanadium flow batteries [J]. Energy Storage Science and Technology, 2025, 14(4): 1377-1385. |
[3] | Hong WANG, Kaiyue ZHANG. Study on thermal treatment activation of carbon felt electrode for all-vanadium flow batteries [J]. Energy Storage Science and Technology, 2025, 14(2): 488-496. |
[4] | Wenshuo DAI, Qianyuan GUO, Xiangnan CHEN, Huamin ZHANG, Xiangkun MA. Research progress of bipolar plate materials for vanadium flow battery [J]. Energy Storage Science and Technology, 2024, 13(4): 1310-1325. |
[5] | Di ZHU, Yangyang ZHAO, Dengxin AI, Li ZHANG, Yong ZHOU. Efficiency optimization of PMSM in flywheel energy storage under multiple working conditions based on genetic algorithm [J]. Energy Storage Science and Technology, 2024, 13(10): 3582-3592. |
[6] | Huamin ZHANG. Development, cost analysis considering various durations, and advancement of vanadium flow batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2772-2780. |
[7] | Shuang ZHANG, Jianing XU, Rongrong ZHANG, Zonghao LIU, Chenqi WANG, Ruonan LIU, Minglin RONG. State-of-health characteristics of all-vanadium redox flow batteries [J]. Energy Storage Science and Technology, 2022, 11(12): 4022-4029. |
[8] | Mengyao QI, Yichen HOU, Lei CHEN, Lijun YANG. Numerical simulation of a novel radial all-vanadium flow battery cell [J]. Energy Storage Science and Technology, 2022, 11(10): 3209-3220. |
[9] | Xi CHEN, Lingxuan HE, Qinxiao LIU, Ye FANG, Shichun LONG, Zhongmin WAN. Thermodynamic analysis of vehicle fuel cell system under dynamic conditions [J]. Energy Storage Science and Technology, 2021, 10(4): 1416-1422. |
[10] | ZHAO Baoguo, LI Kefeng, WANG Guan, LIU Hong, SHI Jiachao, YOU Mei, ZHANG Xiaoxia, XIE Qiao. Study on accelerated life test method for Zn-Ag reserve battery [J]. Energy Storage Science and Technology, 2018, 7(1): 141-. |
[11] | SHEN Haifeng, ZHU Xinjian, CAO Hongfei, SHAO Mengchen. Dynamic modeling of all-vanadium flow battery [J]. Energy Storage Science and Technology, 2018, 7(1): 135-. |
[12] | XIE Congxin1,2, ZHENG Qiong1, LI Xianfeng1,3, ZHANG Huamin1,3. Current advances in the flow battery technology [J]. Energy Storage Science and Technology, 2017, 6(5): 1050-1057. |
[13] | JING Minghua, FAN Xinzhuang, LIU Jianguo, YAN Chuanwei. Electrochemical behavior of graphene oxide modified carbon felt as the positive electrode for vanadium flow battery#br# [J]. Energy Storage Science and Technology, 2017, 6(2): 263-269. |
[14] | XING Feng, ZHENG Qiong, ZHANG Huamin, LI Xianfeng, MA Xiangkun. The measurement of Kozeny-Carman constant in porous electrode of vanadium flow battery [J]. Energy Storage Science and Technology, 2015, 4(5): 506-509. |
[15] | WANG Xiaoli, ZHANG Yu, LI Ying, ZHANG Huamin. Vanadium flow battery technology and its industrial status [J]. Energy Storage Science and Technology, 2015, 4(5): 458-466. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||