Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (6): 2442-2450.doi: 10.19799/j.cnki.2095-4239.2025.0090
• Energy Storage System and Engineering • Previous Articles Next Articles
Hong ZHANG1(), Jinzhong LI1, Xin LI2, Yuan ZHANG2
Received:
2025-02-05
Revised:
2025-02-28
Online:
2025-06-28
Published:
2025-06-27
Contact:
Hong ZHANG
E-mail:1244001267@qq.com
CLC Number:
Hong ZHANG, Jinzhong LI, Xin LI, Yuan ZHANG. Parallel control of vanadium flow battery considering state of health[J]. Energy Storage Science and Technology, 2025, 14(6): 2442-2450.
1 | 李鑫, 李建林, 邱亚, 等. 全钒液流电池储能系统建模与控制技术[M]. 北京: 机械工业出版社, 2020. |
LI X, LI J L, QIU Y, et al. Modeling and control technology of energy storage system for all vanadium redox flow battery[M]. Beijing: China Machine Press, 2020. | |
2 | 邵军康, 李鑫, 邱亚, 等. 全钒液流电池多场耦合建模研究[J]. 高电压技术, 2021, 47(5): 1881-1891. DOI: 10.13336/j.1003-6520.hve. 20200664. |
SHAO J K, LI X, QIU Y, et al. Multi-field coupling modeling of vanadium redox battery[J]. High Voltage Engineering, 2021, 47(5): 1881-1891. DOI: 10.13336/j.1003-6520.hve.20200664. | |
3 | 李建林, 张则栋, 谭宇良, 等. 碳中和目标下储能发展前景综述[J]. 电气时代, 2022(1): 61-65. |
LI J L, ZHANG Z D, TAN Y L, et al. Review on the development prospect of energy storage under the goal of carbon neutrality[J]. Electric Age, 2022(1): 61-65. | |
4 | 张汀, 雷勇, 王小昔. 考虑SOC均衡的直流微网储能系统控制策略研究[J]. 电源技术, 2023, 47(8): 1099-1104. |
ZHANG T, LEI Y, WANG X X. Research on control strategy of DC microgrid energy storage system considering SOC equilibrium[J]. Chinese Journal of Power Sources, 2023, 47(8): 1099-1104. | |
5 | 张爱芳, 魏邦达, 李卓昊, 等. 全钒液流电池建模及SOC在线估计研究进展[J]. 储能科学与技术, 2024, 13(3): 1036-1049. DOI: 10. 19799/j.cnki.2095-4239.2023.0734. |
ZHANG A F, WEI B D, LI Z H, et al. Research progress on modeling and SOC online estimation of vanadium redox-flow batteries[J]. Energy Storage Science and Technology, 2024, 13(3): 1036-1049. DOI: 10.19799/j.cnki.2095-4239.2023.0734. | |
6 | 张华民. 液流电池技术[M]. 北京: 化学工业出版社, 2015. |
ZHANG H M. Flow battery technology[M]. Beijing: Chemical Industry Press, 2015. | |
7 | ALOTTO P, GUARNIERI M, MORO F. Redox flow batteries for the storage of renewable energy: A review[J]. Renewable and Sustainable Energy Reviews, 2014, 29: 325-335. DOI: 10.1016/j.rser.2013.08.001. |
8 | 方炜, 徐朋, 刘晓东, 等. 基于SoC均衡的直流微网储能系统负荷动态分配控制[J]. 电工技术, 2018(9): 20-23. DOI: 10.3969/j.issn. 1002-1388.2018.09.006. |
FANG W, XU P, LIU X D, et al. Dynamic load distribution control of energy storage systems in DC microgrid based on state-of-charge balance[J]. Electric Engineering, 2018(9): 20-23. DOI: 10.3969/j.issn.1002-1388.2018.09.006. | |
9 | NAMBAFU G S, SIDDHARTH K, ZHANG C, et al. An organic bifunctional redox active material for symmetric aqueous redox flow battery[J]. Nano Energy, 2021, 89: 106422. DOI: 10.1016/j.nanoen.2021.106422. |
10 | 张爽, 许伽宁, 张蓉蓉, 等. 全钒液流电池健康状态(SOH)特性[J]. 储能科学与技术, 2022, 11(12): 4022-4029. DOI: 10.19799/j.cnki. 2095-4239.2022.0409. |
ZHANG S, XU J N, ZHANG R R, et al. State-of-health characteristics of all-vanadium redox flow batteries[J]. Energy Storage Science and Technology, 2022, 11(12): 4022-4029. DOI: 10.19799/j.cnki.2095-4239.2022.0409. | |
11 | 邵军康, 李鑫, 莫言青, 等. 全钒液流电池建模与流量特性分析[J]. 储能科学与技术, 2020, 9(2): 645-655. DOI: 10.19799/j.cnki.2095-4239.2019.0215. |
SHAO J K, LI X, MO Y Q, et al. Analysis of modeling and flow characteristics of vanadium redox flow battery[J]. Energy Storage Science and Technology, 2020, 9(2): 645-655. DOI: 10.19799/j.cnki.2095-4239.2019.0215. | |
12 | 朱珊珊, 汪飞, 郭慧, 等. 直流微电网下垂控制技术研究综述[J]. 中国电机工程学报, 2018, 38(1): 72-84, 344. DOI: 10.13334/j.0258-8013.pcsee.171408. |
ZHU S S, WANG F, GUO H, et al. Overview of droop control in DC microgrid[J]. Proceedings of the CSEE, 2018, 38(1): 72-84, 344. DOI: 10.13334/j.0258-8013.pcsee.171408. | |
13 | 金国彬, 罗安, 陈燕东, 等. 基于P-V下垂系数修正的并联逆变器输出功率成比例分配实现[J]. 电工技术学报, 2016, 31(2): 112-120. DOI: 10.19595/j.cnki.1000-6753.tces.2016.02.015. |
JIN G B, LUO A, CHEN Y D, et al. Proportional load sharing for parallel inverter systems based on modified P-V droop coefficient[J]. Transactions of China Electrotechnical Society, 2016, 31(2): 112-120. DOI: 10.19595/j.cnki.1000-6753.tces.2016.02.015. | |
14 | LU X N, GUERRERO J M, SUN K, et al. An improved droop control method for DC microgrids based on low bandwidth communication with DC bus voltage restoration and enhanced current sharing accuracy[J]. IEEE Transactions on Power Electronics, 2014, 29(4): 1800-1812. DOI: 10.1109/TPEL.2013. 2266419. |
15 | 李军, 刘小壮, 张玉琼, 等. 基于自适应下垂算法的直流微电网功率精确分配和母线电压偏差优化控制[J]. 电力电容器与无功补偿, 2021, 42(3): 164-169. DOI: 10.14044/j.1674-1757.pcrpc.2021. 03.026. |
LI J, LIU X Z, ZHANG Y Q, et al. Accurate power distribution and bus voltage deviation optimization control of DC microgrid based on adaptive droop algorithm[J]. Power Capacitor & Reactive Power Compensation, 2021, 42(3): 164-169. DOI: 10.14044/j. 1674-1757.pcrpc.2021.03.026. | |
16 | 王宇轩, 胡毅, 常忆雯, 等. 直流微网基于蓄电池荷电状态的改进下垂控制[J]. 信息技术与信息化, 2021(2): 150-152. DOI: 10.3969/j.issn.1672-9528.2021.02.053. |
WANG Y X, HU Y, CHANG Y W, et al. Improved sag control of DC microgrid based on battery state of charge[J]. Information Technology and Informatization, 2021(2): 150-152. DOI: 10.3969/j.issn.1672-9528.2021.02.053. | |
17 | 郎佳红, 程秋铭, 张泽, 等. 光储型微网中基于SOC的下垂控制的研究[J]. 工业控制计算机, 2020, 33(10): 134-136. |
LANG J H, CHENG Q M, ZHANG Z, et al. Research on SOC-based droop control in optical storage microgrid[J]. Industrial Control Computer, 2020, 33(10): 134-136. | |
18 | OLIVEIRA T R, GONÇALVES SILVA W W A, DONOSO-GARCIA P F. Distributed secondary level control for energy storage management in DC microgrids[J]. IEEE Transactions on Smart Grid, 2017, 8(6): 2597-2607. DOI: 10.1109/TSG.2016.2531503. |
19 | 韦佐霖, 陈民铀, 李杰, 等. 孤岛微网中分布式储能SOC和效率均衡控制策略[J]. 电力自动化设备, 2018, 38(4): 169-177. DOI: 10. 16081/j.issn.1006-6047.2018.04.025. |
WEI Z L, CHEN M Y, LI J, et al. Balancing control strategy of SOC and efficiency for distributed energy storage in islanded microgrid[J]. Electric Power Automation Equipment, 2018, 38(4): 169-177. DOI: 10.16081/j.issn.1006-6047.2018.04.025. | |
20 | 卢志刚, 苗泽裕, 蔡瑶. 考虑时变线阻的多储能SOC稳定均衡控制策略[J]. 高电压技术, 2024, 50(1): 127-137. DOI: 10.13336/j.1003-6520.hve.20230066. |
LU Z G, MIAO Z Y, CAI Y. Stable equilibrium control strategy for multi-energy storage SOC considering time-varying linear resistance[J]. High Voltage Engineering, 2024, 50(1): 127-137. DOI: 10. 13336/j.1003-6520.hve.20230066. | |
21 | 张华, 苏学能, 万承宽. 直流配电网中多退役电池储能组并联的协调控制[J]. 南方电网技术, 2022, 16(4): 132-140. DOI: 10.13648/j.cnki.issn1674-0629.2022.04.015. |
ZHANG H, SU X N, WAN C K. Coordinated control of multi-paralleled retired battery-based energy storage banks in DC distribution network[J]. Southern Power System Technology, 2022, 16(4): 132-140. DOI: 10.13648/j.cnki.issn1674-0629.2022. 04.015. | |
22 | 李楠. 储能型模块化多电平变换器控制方法研究[D]. 济南: 山东大学, 2018. |
LI N. Control methods of modular multilevel converter based battery energy storage system[D]. Jinan: Shandong University, 2018. | |
23 | 马展. 并网型模块化电池储能系统的管理与控制[D]. 济南: 山东大学, 2021. DOI: 10.27272/d.cnki.gshdu.2021.005909. |
MA Z. Management and control of grid-tied modular battery energy storage systems[D]. Jinan: Shandong University, 2021. DOI: 10.27272/d.cnki.gshdu.2021.005909. | |
24 | 陈薇, 侯杨成, 张里, 等. 计及损耗的钒电池储能系统功率优化分配策略[J]. 电工技术学报, 2020, 35(19): 4038-4047. DOI: 10.19595/j.cnki.1000-6753.tces.200122. |
CHEN W, HOU Y C, ZHANG L, et al. Power optimization allocation strategy for vanadium battery energy storage system considering loss[J]. Transactions of China Electrotechnical Society, 2020, 35(19): 4038-4047. DOI: 10.19595/j.cnki.1000-6753.tces.200122. | |
25 | 邱亚, 李鑫, 陈薇, 等. 基于RLS和EKF算法的全钒液流电池SOC估计[J]. 控制与决策, 2018, 33(1): 37-44. DOI: 10.13195/j.kzyjc. 2016.1346. |
QIU Y, LI X, CHEN W, et al. Vanadium redox battery SOC estimation based on RLS and EKF algorithm[J]. Control and Decision, 2018, 33(1): 37-44. DOI: 10.13195/j.kzyjc.2016.1346. | |
26 | 陈薇, 黄钰笛, 李鑫, 等. 基于改进平均电流控制的并联储能系统均流方法[J]. 太阳能学报, 2021, 42(5): 83-90. DOI: 10.19912/j.0254-0096.tynxb.2018-1427. |
CHEN W, HUANG Y D, LI X, et al. Current sharing method for parallel energy storage system based on modified average current scheme[J]. Acta Energiae Solaris Sinica, 2021, 42(5): 83-90. DOI: 10.19912/j.0254-0096.tynxb.2018-1427. |
[1] | Huimin FAN, Haohong PENG, Hui MENG, Menghong TANG, Haohao YI, Jing DING, Jincheng LIU, Chengshan XU, Xuning FENG. Research and simulation analysis of swelling force characteristics in energy storage battery modules [J]. Energy Storage Science and Technology, 2025, 14(6): 2488-2497. |
[2] | Yonglong DUAN, Xia HUA, Zijiao HAN, Bing XIE, Shubo HU, Aikui LI. Research progress on capacity decay and inhibition technology of all-vanadium flow batteries [J]. Energy Storage Science and Technology, 2025, 14(6): 2540-2554. |
[3] | Xiaohu SHI, Yixin HUANG, Tao ZOU, Yiting YUAN. Sulfonated polybenzimidazole membrane crosslinked by a star crosslinker with stable operation of high-performance all-vanadium flow batteries [J]. Energy Storage Science and Technology, 2025, 14(4): 1377-1385. |
[4] | Chaolong ZHANG, Yang CHEN, Mengling LIU, Yufeng ZHANG, Guoqing HUA, Panpan YIN. A state of health estimation method for lithium-ion batteries using ICA-T features and CNN-LA-BiLSTM [J]. Energy Storage Science and Technology, 2025, 14(3): 1258-1269. |
[5] | Hong WANG, Kaiyue ZHANG. Study on thermal treatment activation of carbon felt electrode for all-vanadium flow batteries [J]. Energy Storage Science and Technology, 2025, 14(2): 488-496. |
[6] | Junyu JIAO, Quanquan ZHANG, Ningbo CHEN, Jiyu WANG, Qiudi LU, Haohao DING, Peng PENG, Xiaohe SONG, Fan ZHANG, Jiaxin ZHENG. Development and applications of an intelligent big data analysis platform for batteries [J]. Energy Storage Science and Technology, 2024, 13(9): 3198-3213. |
[7] | Dinghong LIU, Wenkai DONG, Zhaoyang LI, Hongzhu ZHANG, Xin QI. Estimation of real-vehicle battery state of health using the RUN-GRU-attention model [J]. Energy Storage Science and Technology, 2024, 13(9): 3042-3058. |
[8] | Wenshuo DAI, Qianyuan GUO, Xiangnan CHEN, Huamin ZHANG, Xiangkun MA. Research progress of bipolar plate materials for vanadium flow battery [J]. Energy Storage Science and Technology, 2024, 13(4): 1310-1325. |
[9] | Xiaoyu SHEN, Congbo YIN. SOH estimation of lithium-ion batteries using a convolutional Fastformer [J]. Energy Storage Science and Technology, 2024, 13(3): 990-999. |
[10] | Yaning ZHU, Zhendong ZHANG, Lei SHENG, Long CHEN, Zehua ZHU, Linxiang FU, Qing BI. Thermal runaway experiment of 21700 lithium-ion battery under different health conditions [J]. Energy Storage Science and Technology, 2024, 13(3): 971-980. |
[11] | Zhan LI, Lei LIU, Zhenyong YANG, Yong SHANG, Mo YO, Aiguo GAO, Jingqiu KANG. Flywheel energy storage-thermal power mutual aid primary frequency modulation analysis based on process decomposition [J]. Energy Storage Science and Technology, 2023, 12(9): 2854-2861. |
[12] | Zhiwei CHEN, Weige ZHANG, Junwei ZHANG, Yanru ZHANG. Comprehensive health assessment and screening method of power battery pack based on visual characteristics of charge curves [J]. Energy Storage Science and Technology, 2023, 12(7): 2211-2219. |
[13] | Chen GENG, Jinhao MENG, Qiao PENG, Tianqi LIU, Xueyang ZENG, Gang CHEN. Estimation of the state of health of lithium-ion batteries based on feature extraction of the relaxation process [J]. Energy Storage Science and Technology, 2023, 12(11): 3479-3487. |
[14] | Huamin ZHANG. Development, cost analysis considering various durations, and advancement of vanadium flow batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2772-2780. |
[15] | CHANG Zeyu, ZHANG Zhiqi, ZHANG Xiaodong, LI Li, YU Yajuan. A data-driven state of health (SOH) assessment platform for vehicle power batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1847-1853. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||