Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (5): 1946-1953.doi: 10.19799/j.cnki.2095-4239.2024.1172
• Energy Storage Materials and Devices • Previous Articles Next Articles
Yifei WANG1,3(), Fan XU1,2, Liang WANG1,2,3, Xingjian DAI1,2,3(
), Yujie XU1,2,3, Haisheng CHEN1,2,3(
)
Received:
2024-12-12
Revised:
2025-02-15
Online:
2025-05-28
Published:
2025-05-21
Contact:
Xingjian DAI, Haisheng CHEN
E-mail:wangyifei@iet.cn;daixingjian@iet.cn;chen_hs@iet.cn
CLC Number:
Yifei WANG, Fan XU, Liang WANG, Xingjian DAI, Yujie XU, Haisheng CHEN. Analysis and design on stator heat dissipation of motor in flywheel energy storage system[J]. Energy Storage Science and Technology, 2025, 14(5): 1946-1953.
1 | 戴兴建, 魏鲲鹏, 张小章, 等. 飞轮储能技术研究五十年评述[J]. 储能科学与技术, 2018, 7(5): 765-782. DOI: 10.12028/j.issn.2095-4239.2018.0083. |
DAI X J, WEI K P, ZHANG X Z, et al. A review on flywheel energy storage technology in fifty years[J]. Energy Storage Science and Technology, 2018, 7(5): 765-782. DOI: 10.12028/j.issn.2095-4239.2018.0083. | |
2 | 张新宾, 储江伟, 李洪亮, 等. 飞轮储能系统关键技术及其研究现状[J]. 储能科学与技术, 2015, 4(1): 55-60. DOI: 10.3969/j.issn.2095-4239.2015.01.005. |
ZHANG X B, CHU J W, LI H L, et al. Key technologies of flywheel energy storage systems and current development status[J]. Energy Storage Science and Technology, 2015, 4(1): 55-60. DOI: 10.3969/j.issn.2095-4239.2015.01.005. | |
3 | HU S, LIU C, DING J, et al. Thermo-economic modeling and evaluation of physical energy storage in power system[J]. Journal of Thermal Science, 2021, 30(6): 1861-1874. DOI: 10.1007/s11630-021-1417-4. |
4 | MOUSAVI G S M, FARAJI F, MAJAZI A, et al. A comprehensive review of flywheel energy storage system technology[J]. Renewable and Sustainable Energy Reviews, 2017, 67: 477-490. DOI: 10.1016/j.rser.2016.09.060. |
5 | AMIRYAR M E, PULLEN K R. A review of flywheel energy storage system technologies and their applications[J]. Applied Sciences, 2017, 7(3): 286. DOI: 10.3390/app7030286. |
6 | 赵思锋, 唐英伟, 王赛, 等. 基于飞轮储能技术的城市轨道交通再生能回收控制策略研究[J]. 储能科学与技术, 2018, 7(3): 524-529. DOI: 10.12028/j.issn.2095-4239.2018.0053. |
ZHAO S F, TANG Y W, WANG S, et al. The study of control strategy for urban mass transit based on flywheel energy storage system[J]. Energy Storage Science and Technology, 2018, 7(3): 524-529. DOI: 10.12028/j.issn.2095-4239.2018.0053. | |
7 | 邢向上, 姜新建. 飞轮储能系统电机及其控制器概述[J]. 储能科学与技术, 2015, 4(2): 147-152. DOI: 10.3969/j.issn.2095-4239.2015. 02.004. |
XING X S, JIANG X J. Introduction to motors and controllers of flywheel energy storage systems[J]. Energy Storage Science and Technology, 2015, 4(2): 147-152. DOI: 10.3969/j.issn.2095-4239.2015.02.004. | |
8 | 张晓晨. 高速永磁发电机温度分布与结构优化设计研究[D]. 哈尔滨: 哈尔滨工业大学, 2012. |
9 | 徐帆, 戴兴建, 王又珑, 等. 飞轮储能用永磁电机研究进展[J]. 储能科学与技术, 2024, 13(10): 3423-3441. DOI: 10.19799/j.cnki.2095-4239.2024.0320. |
XU F, DAI X J, WANG Y L, et al. Research progress on permanent magnet machines for flywheel energy storage[J]. Energy Storage Science and Technology, 2024, 13(10): 3423-3441. DOI: 10.19799/j.cnki.2095-4239.2024.0320. | |
10 | 陈磊, 王亮, 林曦鹏, 等. 飞轮储能热管理研究现状分析[J]. 中外能源, 2019, 24(2): 84-91. |
CHEN L, WANG L, LIN X P, et al. Analysis on research status of thermal management of flywheel energy storage system[J]. Sino-Global Energy, 2019, 24(2): 84-91. | |
11 | 秦庆雷. 飞轮储能用高速永磁电机损耗分析[D]. 天津: 天津大学, 2016. |
QIN Q L. Loss analysis in a high speed permanent magnet motor for flywheel energy storage system[D]. Tianjin: Tianjin University, 2016. | |
12 | 焦渊远, 王艺斐, 戴兴建, 等. 飞轮储能系统电机转子散热研究进展[J]. 储能科学与技术, 2023, 12(10): 3131-3144. DOI: 10.19799/j.cnki.2095-4239.2023.0261. |
JIAO Y Y, WANG Y F, DAI X J, et al. Overview of the motor-generator rotor cooling system in a flywheel energy storage system[J]. Energy Storage Science and Technology, 2023, 12(10): 3131-3144. DOI: 10.19799/j.cnki.2095-4239.2023.0261. | |
13 | 陈丽香, 付佳玉, 张超, 等. 电动汽车用永磁电机温升及冷却的研究[J]. 微电机, 2020, 53(6): 13-17, 23. DOI: 10.15934/j.cnki.micromotors.2020.06.003. |
CHEN L X, FU J Y, ZHANG C, et al. Research on temperature rise and cooling of permanent magnet motors for electric vehicles[J]. Micromotors, 2020, 53(6): 13-17, 23. DOI: 10.15934/j.cnki.micromotors.2020.06.003. | |
14 | 王淑旺, 高月仙, 谭立真. 永磁同步电机温度场分析与水道结构优化[J]. 电机与控制应用, 2016, 43(7): 51-56. DOI: 10.3969/j.issn.1673-6540.2016.07.010. |
WANG S W, GAO Y X, TAN L Z. Analysis of temperature field of permanent magnet synchronous motor and water jacket structure optimization[J]. Electric Machines & Control Application, 2016, 43(7): 51-56. DOI: 10.3969/j.issn.1673-6540.2016.07.010. | |
15 | 王晓远, 刘云飞. 基于FEM的电动汽车用电机水冷系统分析[J]. 微电机, 2014, 47(5): 9-12. DOI: 10.15934/j.cnki.micromotors. 2014.05.001. |
WANG X Y, LIU Y F. Analysis of motor water-cooling system based on FEM[J]. Micromotors, 2014, 47(5): 9-12. DOI: 10.15934/j.cnki.micromotors.2014.05.001. | |
16 | 李青青, 黄勤, 杨立, 等. 永磁同步电机水冷系统散热参数分析与热仿真[J]. 机械设计与制造, 2014(4): 188-191. DOI: 10.19356/j.cnki.1001-3997.2014.04.059. |
LI Q Q, HUANG Q, YANG L, et al. Analysis of cooling system parameters and thermal simulation for permanent magnet synchronous motor[J]. Machinery Design & Manufacture, 2014(4): 188-191. DOI: 10.19356/j.cnki.1001-3997.2014.04.059. | |
17 | 刘婉, 邹海荣, 唐守杰, 等. 电动机环形水道冷却性能及流动特性分析[J]. 上海电机学院学报, 2015, 18(4): 227-231. |
LIU W, ZOU H R, TANG S J, et al. Analysis of cooling performance and flow characteristics of motor annular water jacket[J]. Journal of Shanghai Dianji University, 2015, 18(4): 227-231. | |
18 | 王晓远, 杜静娟. 应用CFD流固耦合热分析车用高功率密度电机的水冷系统[J]. 电工技术学报, 2015, 30(9): 30-38. DOI: 10.19595/j.cnki.1000-6753.tces.2015.09.004. |
WANG X Y, DU J J. Design and analysis of water cooling system for HEVs high-power-density motor using CFD and thermal technology[J]. Transactions of China Electrotechnical Society, 2015, 30(9): 30-38. DOI: 10.19595/j.cnki.1000-6753.tces. 2015.09.004. | |
19 | 王钰琦, 黄晓艳, 方攸同. 车用电机温度场分析与冷却结构选择[J]. 微电机, 2020, 53(1): 1-5. DOI: 10.15934/j.cnki.micromotors. 2020.01.001. |
WANG Y Q, HUANG X Y, FANG Y T. Thermal analysis and cooling structure selection of electric machine applied in EV[J]. Micromotors, 2020, 53(1): 1-5. DOI: 10.15934/j.cnki.micromotors. 2020.01.001. | |
20 | 杨世铭, 陶文铨. 传热学[M]. 4版. 北京: 高等教育出版社, 2006.YANG S M, TAO W Q. Heat transfer[M]. 4th ed. Beijing: Higher Education Press, 2006. |
21 | 孙哲, 刘明基, 吴界辰. 非晶合金与硅钢片高速永磁电机定子二维温度场对比分析[J]. 电气工程, 2019(1): 19-31. |
SUN Z, LIU M J, WU J C. Analysis and comparison of 2D temperature between amorphous alloy and silicon steel sheet of high-speed permanent magnet motor[J]. Journal of Electrical Engineering, 2019(1): 19-31. |
[1] | Rengaowa SA, Chaohui WU, Zelong NI, Yue ZHANG, Xinjian JIANG, Jianyu TIAN. A variable-parameter PID active power control strategy of inertial flywheel based on reinforcement learning [J]. Energy Storage Science and Technology, 2025, 14(5): 1982-1990. |
[2] | Shunxin LIU, Haoyang LI, Jianxing ZHANG, Guang ZENG, Lingping XU. A study on the synergistic optimization of flow channel structures and guide plates in a 280 Ah air-cooled battery pack for energy storage [J]. Energy Storage Science and Technology, 2025, 14(5): 1806-1817. |
[3] | Jintao WU, Yongjun ZHOU, Xu YANG, Chenxin DENG, Yiming HAN. Numerical simulation of the fire suppression effect of fine water mist on electric vehicles [J]. Energy Storage Science and Technology, 2025, 14(5): 2098-2105. |
[4] | Qingxiang XU, Wei TENG, Run QIN, Shunyi SONG, Yibing LIU, Shuangyin LIANG. Energy management and control strategy for grid-connected frequency regulation flywheel energy storage systems [J]. Energy Storage Science and Technology, 2025, 14(5): 2013-2022. |
[5] | Chenglong JIN, Mengting SUN, Qingfei MENG, Shuwei ZHANG, Zhou ZHOU, Yuyang QI. Design and application of wide-temperature electrolytes for Li/Cr8O21 batteries [J]. Energy Storage Science and Technology, 2025, 14(4): 1369-1376. |
[6] | Yakun LIU, Siyuan SHEN, Wenyan LEI, Jiaxin GAO, Denghui JIN, Yujun LI, Donghuang LUO, Wei HAO, Zheng LIANG. Temperature rise response of cylindrical lithium-ion cells to surge current [J]. Energy Storage Science and Technology, 2025, 14(4): 1574-1584. |
[7] | Wenqi DONG, Donghui ZHANG, Yifan CAO, Zhaoxuan NING, Xinjian JIANG, Ming LI, Xuewei SHI. The control strategies concerning the new type inertia flywheel and high-speed flywheel involved in the grid inertia response and primary frequency modulation [J]. Energy Storage Science and Technology, 2025, 14(3): 1224-1233. |
[8] | Zhiwei KUANG, Zhendong ZHANG, Lei SHENG, Linxiang FU. Research on low-temperature rapid heating method for high-capacity lithium-ion batteries in energy storage [J]. Energy Storage Science and Technology, 2025, 14(2): 791-798. |
[9] | Shifeng YE, Chaofeng HONG, Xiao QI, Weixiong WU, Zijian TAN, Qi ZHOU, Zhaoyang ZHANG. Lithium-ion batteries surface temperature prediction toward EEMD-GRU-NN method [J]. Energy Storage Science and Technology, 2025, 14(1): 380-387. |
[10] | Yijie YAO, Junwei ZHANG, Yanjun ZHAO, Hongcheng LIANG, Dongni ZHAO. Effect of interfacial dynamics on low temperature performance of sodium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(1): 30-41. |
[11] | Xuefeng HU, Xianlei CHANG, Xiaoxiao LIU, Wei XU, Wenbin ZHANG. SOC estimation of lithium-ion batteries under multiple temperatures conditions based on MIARUKF algorithm [J]. Energy Storage Science and Technology, 2024, 13(9): 2983-2994. |
[12] | Yaokang LI, Haidong YANG, Kangkang XU, Zhaoyu LAN, Runnan ZHANG. Temperature prediction of lithium batteries based on weighted UMAP and improved BLS [J]. Energy Storage Science and Technology, 2024, 13(9): 3006-3015. |
[13] | Ning HE, Fangfang YANG. Early prediction of battery lifetime based on energy and temperature features [J]. Energy Storage Science and Technology, 2024, 13(9): 3016-3029. |
[14] | Ying LIU, Bingxiang SUN, Xinze ZHAO, Junwei ZHANG. Joint estimation of SOC/SOP for lithium-ion batteries across a wide temperature range using an electro-thermal coupling model [J]. Energy Storage Science and Technology, 2024, 13(9): 3030-3041. |
[15] | Yuguang LI, Xiang LIU, Yanzhao LIANG, Shuangzhen LIU. Research on the application of flywheel energy storage device in rail transit [J]. Energy Storage Science and Technology, 2024, 13(8): 2679-2686. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||