Energy Storage Science and Technology ›› 2016, Vol. 5 ›› Issue (3): 355-366.doi: 10.3969/j.issn.2095-4239.2016.03.014
Previous Articles Next Articles
CHEN Yuyang, HU Fei, ZHAN Yuanjie, WU Yida, ZHAO Junnian, CHEN Bin, WANG Hao, YAN Yong, YU Hailong, BEN Liubin, LIU Yanyan, HUANG Xuejie
Received:
2016-04-19
Revised:
2016-04-21
Online:
2016-05-01
Published:
2016-05-01
CHEN Yuyang, HU Fei, ZHAN Yuanjie, WU Yida, ZHAO Junnian, CHEN Bin, WANG Hao, YAN Yong, YU Hailong, BEN Liubin, LIU Yanyan, HUANG Xuejie.
[1] HAYASHI T,MIYAZAKI T,MATSUDA Y,et al. Effect of lithium-ion diffusibility on interfacial resistance of LiCoO2 thin film electrode modified with lithium tungsten oxides[J]. Journal of Power Sources,2016,305:46-53.
[2] YANO A,UEDA A,SHIKANO M,et al. Surface structure and high-voltage charging/discharging performance of low-content Zr-oxide-coated LiNi1/3Co1/3Mn1/3O2[J]. Journal of the Electrochemical Society,2016,163(2):A75-A82.
[3] CHIBA K,SHIKANO M,SAKAEBE H. Synthesis and electrochemical properties of Li2/3Ni1/3Mn2/3O2 as a novel 5 V class positive electrode material for lithium -ion batteries[J]. Journal of Power Sources,2016,304:60-63.
[4] BIAN X,FU Q,PANG Q,et al. Multi-functional surface engineering for Li-excess layered cathode material targeting excellent electrochemical and thermal safety properties[J]. ACS Applied Materials & Interfaces,2016,8(5):3308-3318.
[5] YAN P,ZHENG J,ZHANG X,et al. Atomic to nanoscale investigation of functionalities of an Al2O3 coating layer on a cathode for enhanced battery performance[J]. Chemistry of Materials,2016,28(3):857-863.
[6] KIM N Y,YIM T,SONG J H,et al. Microstructural study on degradation mechanism of layered LiNi0.6Co0.2Mn0.2O2 cathode materials by analytical transmission electron microscopy[J]. Journal of Power Sources,2016,307:641-648.
[7] FREIRE M,KOSOVA N V,JORDY C,et al. A new active Li-Mn-O compound for high energy density Li-ion batteries[J]. Nature Materials,2016,15(2):173-177.
[8] MICHALAK B,BERKES B B,SOMMER H,et al. Gas evolution in LiNi0.5Mn1.5O4/graphite cells studied in operando by a combination of differential electrochemical mass spectrometry, neutron imaging, and pressure measurements[J]. Analytical Chemistry,2016,88(5):2877-2883.
[9] KOSAVA N V,BOBRIKOV I A,PODGOMOVA O A,et al. Peculiarities of structure, morphology, and electrochemistry of the doped 5-V spinel cathode materials LiNi0.5–x Mn1.5–yMx+yO4(M = Co, Cr, Ti; x+y=0.05) prepared by mechanochemical way[J]. Journal of Solid State Electrochemistry,2016,20(1):235-246.
[10] VISSERS D R,ISHEIM D,ZHAN C,et al. Understanding atomic scale phenomena within the surface layer of a long-term cycled 5 V spinet electrode[J]. Nano Energy,2016,19:297-306.
[11] FANG J C,XU Y F,XU G L,et al. Fabrication of densely packed LiNi0.5Mn1.5O4 cathode material with excellent long-term cycleability for high-voltage lithium ion batteries[J]. Journal of Power Sources,2016,304:15-23.
[12] TAKAHASHI I,ARAI H,MURAYAMA H,et al. Phase transition kinetics of LiNi0.5Mn1.5O4 analyzed by temperature-controlled operando X-ray absorption spectroscopy[J]. Physical Chemistry Chemical Physics,2016,18(3):1897-1904.
[13] XIAO B,LIU J,SUN Q,et al. Unravelling the role of electrochemically active FePO4 coating by atomic layer deposition for increased high-voltage stability of LiNi0.5Mn1.5O4 cathode material[J]. Advanced Science,2015,2(5):doi: 10.1002/advs. 201500022.
[14] GABRIELLI G,AXMANN P,WOHLFAHRT-MEHRENS M. Study of LiNi0.5Mn1.5O4 morphological features for reduced electrolyte decomposition at high potential[J]. Journal of the Electrochemical Society,2016,163(3):A470-A476.
[15] HU E,BAK S M,LIU Y,et al. Utilizing environmental friendly iron as a substitution element in spinel structured cathode materials for safer high energy lithium-ion batteries[J]. Advanced Energy Materials,2016,6(3):doi: 10.1002/aenm.201501662.
[16] SUN P,MA Y,ZHAI T,et al. High performance LiNi0.5Mn1.5O4 cathode by Al-coating and Al3+-doping through a physical vapor deposition method[J]. Electrochimica Acta,2016,191:237-246.
[17] WALLER G H,BROOKER P D,RAINWATER B H,et al. Structure and surface chemistry of Al2O3 coated LiMn2O4 nanostructured electrodes with improved lifetime[J]. Journal of Power Sources,2016,306:162-170.
[18] LIU H,WANG J,ZHANG X,et al. Morphological evolution of high-voltage spinel LiNi0.5Mn1.5O4 cathode materials for lithium-ion batteries:The critical effects of surface orientations and particle size[J]. ACS Applied Materials & Interfaces,2016,8(7):4661-4675.
[19] HWANG C,KIM T,NOH Y,et al. Synthesis, characterization, and electrochemical performance of V-doped Li2MnSiO4/C composites for Li-ion battery[J]. Materials Letters,2016,164:270-273.
[20] LI Z,PENG Z,ZHANG H,et al. 100-oriented LiFePO4 nan of lakes toward high rate Li-ion battery cathode[J]. Nano Letters,2016,16(1):795-799.
[21] FUKUTSUKA T,NAKAGAWA T,MIYAZAKI K,et al. Electrochemical properties of LiCoPO4-thin film electrodes in LiF-based electrolyte solution with anion receptors[J]. Journal of Power Sources,2016,306:753-757.
[22] BOK T,CHO S J,CHOI S,et al. An effective coupling of nanostructured Si and gel polymer electrolytes for high-performance lithium-ion battery anodes[J]. RSC Advances,2016,6(9):6960-6966.
[23] JUNG S C,KIM H J,KIM J H,et al. Atomic-level understanding toward a high-capacity and high power silicon oxide(SiO) material[J]. Journal of Physical Chemistry C,2016,120(2):886-892.
[24] DUFEK E J,PICKER M,PETKOVIC L M. Density impact on performance of composite Si/graphite electrodes[J]. Journal of Applied Electrochemistry,2016,46(3):359-367.
[25] HOROWITZ Y,HAN H L,ROSS P N,et al. In situ potentiodynamic analysis of the electrolyte/silicon electrodes interface reactions-a sum frequency generation vibrational spectroscopy study[J]. Journal of the American Chemical Society,2016,138(3):726-729.
[26] LI Y,RAGHAVN R,WAGER N A,et al. Type I clathrates as novel silicon anodes:An electrochemical and structural investigation[J]. Advanced Science,2015,2(6):doi: 10.1002/advs.201500057.
[27] BORDES A,DE-VITO E,HAON C,et al. Multiscale investigation of silicon anode Li insertion mechanisms by time- of -flight secondary ion mass spectrometer imaging performed on an in situ focused ion beam cross section[J]. Chemistry of Materials,2016,28(5):1566-1573.
[28] BORDES A,DE-VITO E,HAON C,et al. Investigation of lithium insertion mechanisms of a thin-film si electrode by coupling time- of -flight secondary-ion mass spectrometry,X-ray photoelectron spectroscopy,and focused-ion-beam/SEM[J]. ACS Applied Materials & Interfaces,2015,7(50):27853-27862.
[29] MICHAN A L,LESKES M,GREY C P. Voltage dependent solid electrolyte interphase formation in silicon electrodes:Monitoring the formation of organic decomposition products[J]. Chemistry of Materials,2016,28(1):385-398.
[30] BUCUR C B,LITA A,OSADA N,et al. A soft, multilayered lithium-electrolyte interface[J]. Energy & Environmental Science,2016,9(1):112-116.
[31] PENG Z,WANG S,ZHOU J,et al. Volumetric variation confinement:Surface protective structure for high cyclic stability of lithium metal electrodes[J]. Journal of Materials Chemistry A,2016,4(7):2427-2432.
[32] TAN,J,TARTAKOVSKY A M,FERRIS K,et al. Investigating the effects of anisotropic mass transport on dendrite growth in high energy density lithium batteries[J]. Journal of the Electrochemical Society,2016,163(2):A318-A327.
[33] HUFF L A,TAVASSOL H,ESBENSHADE J L,et al. Identification of Li-ion battery SEI compounds through Li and C solid-state MAS NMR spectroscopy and MALDI-T of mass spectrometry[J]. ACS Applied Materials & Interfaces,2016,8(1):371-380.
[34] LI W,HU C,ZHOU M,et al. The electrochemical synthesis of LiNbO2 in molten salts and its application for lithium ion batteries with high rate capability[J]. Electrochimica Acta,2016,189:231-236.
[35] LIANG Y,CHEN L,CAI L,et al. Strong contribution of pore morphology to the high-rate electrochemical performance of lithium-ion batteries[J]. Chemical Communications,2016,52(4):803-806.
[36] BUROW D,SERGEEVA K,CALLES S,et al. Inhomogeneous degradation of graphite anodes in automotive lithium ion batteries under low-temperature pulse cycling conditions[J]. Journal of Power Sources,2016,307:806-814.
[37] LI N W,YIN Y X,YANG C P,et al. An artificial solid electrolyte interphase layer for stable lithium metal anodes[J]. Advanced Materials,2016,28(9):1853-1858.
[38] ZHANG Q,PAN J,LU P,et al. Synergetic effects of inorganic components in solid electrolyte interphase on high cycle efficiency of lithium ion batteries[J]. Nano Letters,2016,16(3):2011-2016.
[39] MA Q,ZHANG H,ZHOU C,et al. Single lithium-ion conducting polymer electrolytes based on a super-delocalized polyanion[J]. AngewandteChemie-International Edition,2016,55(7):2521-2525.
[40] NAIR J R,DESTRO M,BELLA F,et al. Thermally cured semi-interpenetrating electrolyte networks (s-IPN) for safe and aging-resistant secondary lithium polymer batteries[J]. Journal of Power Sources,2016,306:258-267.
[41] KATO A,HAYASHI A,TATSUMISAGO M. Enhancing utilization of lithium metal electrodes in all-solid-state batteries by interface modification with gold thin films[J]. Journal of Power Sources,2016,309:27-32.
[42] PARK B,LEE C H,XIA C,et al. Characterization of gel polymer electrolyte for suppressing deterioration of cathode electrodes of Li ion batteries on high-rate cycling at elevated temperature[J]. Electrochimica Acta,2016,188:78-84.
[43] MOLINA-PIPER D,EVANS T,XU S,et al. Optimized silicon electrode architecture, interface, and microgeometry for next-generation lithium-ion batteries[J]. Advanced Materials,2016,28(1):188-193.
[44] CHEN J,ZHANG H,WANG M,et al. Improving the electrochemical performance of high voltage spinel cathode at elevated temperature by a novel electrolyte additive[J]. Journal of Power Sources,2016,303:41-48.
[45] CHEN R,LIU F,CHEN Y,et al. An investigation of functionalized electrolyte using succinonitrile additive for high voltage lithium-ion batteries[J]. Journal of Power Sources,2016,306:70-77.
[46] WANG R,LI X,WANG Z,et al. Manganese dissolution from LiMn2O4 cathodes at elevated temperature:Methylene methanedisulfonate as electrolyte additive[J]. Journal of Solid State Electrochemistry,2016,20(1):19-28.
[47] HOFMAN A,WERTH F,HOEWELING A,et al. Investigation of the oxidative stability of Li-ion battery electrolytes using cathode materials[J]. ECS Electrochemistry Letters,2015,4(12):A141-A144.
[48] FORESTIER C,JANKOWSKI P,COSER L,et al. Facile reduction of pseudo-carbonates:Promoting solid electrolyte interphases with dicyanoketene alkylene acetals in lithium-ion batteries[J]. Journal of Power Sources,2016,303:1-9.
[49] MIAO R,YANG J,XU Z,et al. A new ether-based electrolyte for dendrite-free lithium-metal based rechargeable batteries[J]. Scientific Reports,2016,6:doi: 10.1038/srep21771.
[50] TRASK S E,PUPEK K Z,GILBERT J A,et al. Performance of full cells containing carbonate-based LiFSI electrolytes and silicon-graphite negative electrodes[J]. Journal of the Electrochemical Society,2016,163(3):A345-A350.
[51] SAITO Y,MORIMURA W,KURATANI R,et al. Factors controlling the ionic mobility of lithium electrolyte solutions in separator membranes[J]. Journal of Physical Chemistry C,2016,120(7):3619-3624.
[52] JAUMANN T,BALACH J,KLOSE M,et al. Role of 1,3-dioxolane and LiNO3 addition on the long term stability of nanostructured silicon/carbon anodes for rechargeable lithium batteries[J]. Journal of the Electrochemical Society,2016,163(3):A557-A564.
[53] HALL D S,NIE M,ELLIS L D,et al. Surface-electrolyte interphase formation in lithium-ion cells containing pyridine adduct additives[J]. Journal of the Electrochemical Society,2016,163(5):A773-A780.
[54] HE M,BOULET-ROBLIN L,BOREL P,et al. Effects of solvent, lithium salt, and temperature on stability of carbonate-based electrolytes for 5.0 V LiNi0.5Mn1.5O4 electrodes[J]. Journal of the Electrochemical Society,2016,163(2):A83-A89.
[55] JUNG J,SONG K.,BAE Y,et al. Achieving outstanding Li+-ORR and -OER activities via edge- and corner-embedded bimetallic nanocubes for rechargeable Li-O2 batteries[J]. Nano Energy,2015,18:71-80.
[56] LI X,WOLDEN C A,BAN C,et al. Facile synthesis of lithium sulfide nanocrystals for use in advanced rechargeable batteries[J]. ACS Applied Materials & Interfaces,2015,7(51):28444-28451.
[57] HENDRICKSON K E,MA L,COHN G,et al. Model membrane-free Li-S batteries for enhanced performance and cycle life[J]. Advanced Science,2015,2(5):doi: 10.1002/advs.201500068.
[58] FU C,WONG B M,BOZHILOV K N,et al. Solid state lithiation-delithiation of sulphur in sub-nano confinement:A new concept for designing lithium-sulphur batteries[J]. Chemical Science,2016,7(2):1224-1232.
[59] LIANG S,LIANG C,XIA Y,et al. Facile synthesis of porous Li2S@C composites as cathode materials for lithium-sulfur batteries[J]. Journal of Power Sources,2016,306:200-207.
[60] TAKAHASHI K,HIGA K,MAIR S,et al. Mechanical degradation of graphite/PVDF composite electrodes:A model-experimental study[J]. Journal of the Electrochemical Society,2016,163(3):A385-A395.
[61] SCIPIONI R,JORGENSEN P S,NGO D T,et al. Electron microscopy investigations of changes in morphology and conductivity of LiFePO4/C electrodes[J]. Journal of Power Sources,2016,307:259-269.
[62] MERLA Y,WU B,YUFIT V,et al. Novel application of differential thermal voltammetry as an in-depth state- of -health diagnosis method for lithium-ion batteries[J]. Journal of Power Sources,2016,307:308-319.
[63] SUZUKI K,BARBIELLINI B,ORIKASA Y,et al. Non-destructive measurement of in-operando lithium concentration in batteries via X-ray compton scattering[J]. Journal of Applied Physics,2016,119(2):doi: 10.1063/1.4939304.
[64] DINH-NGUYEN M T,DELACOURT C. Investigation of the passivation properties of the solid electrolyte interphase using a soluble redox couple[J]. Journal of the Electrochemical Society,2016,163(5):A706-A713.
[65] WANG C Y,ZHANG G,GE S,et al. Lithium-ion battery structure that self-heats at low temperatures[J]. Nature,2016,529(7587):515-518.
[66] SUN X G,BI Z,LIU H,et al. A high performance hybrid battery based on aluminum anode and LiFePO4 cathode[J]. Chemical Communications,2016,52(8):1713-1716.
[67] GRUEBL D,JANEK J,BESSLER W G. Electrochemical pressure impedance spectroscopy (EPIS) as diagnostic method for electrochemical cells with gaseous reactants:A model-based analysis[J]. Journal of the Electrochemical Society,2016,163(5):A599-A610.
[68] APPIAH W A,PARK J,VAN KHUE L,et al. Comparative study on experiments and simulation of blended cathode active materials for lithium ion batteries[J]. Electrochimica Acta,2016,187:422-432.
[69] HARUTA M,SHIRAKI S,OHSAWA T,et al. Preparation and in-situ characterization of well-defined solid electrolyte/electrode interfaces in thin-film lithium batteries[J]. Solid State Ionics,2016,285:118-121.
[70] DEY S,AYALEW B,PISU P. Nonlinear adaptive observer for a lithium-ion battery cell based on coupled electrochemical-thermal model[J]. Journal of Dynamic Systems Measurement And Control-Transactions of the Asme,2015,137(11):doi: 10.1115/1.4030972.
[71] FRIDHOLM B,WIK T,NILSSON M. Robust recursive impedance estimation for automotive lithium-ion batteries[J]. Journal of Power Sources,2016,304:33-41.
[72] HOOPER J M,MARCO J,CHOUCHELAMANE G H,et al. Vibration durability testing of nickel manganese cobalt Oxide (NMC) lithium-ion 18650 battery cells[J]. Energies,2016,9(1):doi:10.3390/en9010052.
[73] KAKIMOTO N,GOTO K. Capacity-fading model of lithium-ion battery applicable to multicell storage systems[J]. IEEE Transactions on Sustainable Energy,2016,7(1):108-117.
[74] SCHINDLER S,BAUER M,PETZL M,et al. Voltage relaxation and impedance spectroscopy as in-operando methods for the detection of lithium plating on graphitic anodes in commercial lithium-ion cells[J]. Journal of Power Sources,2016,304:170-180.
[75] ABDOLLAHI A,HAN X,AWARI G V,et al. Optimal battery charging,Part I:Minimizing time-to-charge, energy loss, and temperature rise for OCV-resistance battery model[J]. Journal of Power Sources,2016,303:388-398.
[76] OH K Y,EPUREANU B I. A novel thermal swelling model for a rechargeable lithium-ion battery cell[J]. Journal of Power Sources,2016,303:86-96.
[77] CORTE DAD,CAILLON G,JORDY C,et al. Spectroscopic insight into Li-ion batteries during operation:An alternative infrared approach[J]. Advanced Energy Materials,2015,38(5):1237-1240.
[78] LIU H,FOSTER J M,GULLY A,et al.Three-dimensional investigation of cycling-induced microstructural changes in lithium-ion battery cathodes using focused ion beam/scanning electron microscopy[J]. Journal of Power Sources,2016,306:300-308.
[79] NGUYEN D T,KANG J,NAM K M,et al. Understanding interfacial chemistry and stability for performance improvement and fade of high-energy Li-ion battery of LiNi0.5Co0.2Mn0.3O2/silicon-graphite[J]. Journal of Power Sources,2016,303:150-158.
[80] PHILIPPE B,HAHLIN M,EDSTROM K,et al. Photoelectron spectroscopy for lithium battery interface studies[J]. Journal of the Electrochemical Society,2016,163(2):A178-A191.
[81] GE H,HUANG J,ZHANG J,et al. Temperature-adaptive alternating current preheating of lithium-ion batteries with lithium deposition prevention[J]. Journal of the Electrochemical Society,2016,163(2):A290-A299.
[82] LUETH S,SAUTER U S,BESSLER W G. An agglomerate model of lithium-ion battery cathodes[J]. Journal of the Electrochemical Society,2016,163(2):A210-A222.
[83] NELSON K J,ABARBANEL D W,XIA J,et al. Effects of upper cut of f potential on LaPO4-coated and uncoated LiNi0.42Mn0.42Co0.16 O2/graphite pouch cells[J]. Journal of the Electrochemical Society,2016,163(2):A272-A280.
[84] CHEN Y,SUN Y,HUANG X. Origin of the Ni/Mn ordering in high-voltage spinel LiNi0.5Mn1.5O4:The role of oxygen vacancies and cation doping[J]. Computational Materials Science,2016,115:109-116.
[85] SUMITA M,TANAKA Y,IKEDA M,et al. Theoretical insight into charging process in a Li3PO4 (100)/LiFePO4 (010) coherent interface system[J]. Solid State Ionics,2016,285:59-65.
[86] LIN Y X,LIU Z,LEUNG K,et al. Connecting the irreversible capacity loss in Li-ion batteries with the electronic insulating properties of solid electrolyte interphase (SEI) components[J]. Journal of Power Sources,2016,309:221-230.
[87] YOKOKAWA H. Thermodynamic stability of sulfide electrolyte/oxide electrode interface in solid-state lithium batteries[J]. Solid State Ionics,2016,285:126-135.
[88] DIXIT M,KOSA M,LAVIO S,et al. Thermodynamic and kinetic studies of LiNi0.5Co0.2Mn0.3O2 as a positive electrode material for Li-ion batteries using first principles[J]. Physical Chemistry Chemical Physics,2016,18(9):6799-6812.
[89] LIU Z,QI Y,LIN Y X,et al. Interfacial study on solid electrolyte interphase at Li metal anode:Implication for Li dendrite growth[J]. Journal of the Electrochemical Society,2016,163(3):A592-A598.
|
[1] | Xiongwen XU, Yang NIE, Jian TU, Zheng XU, Jian XIE, Xinbing ZHAO. Abuse performance of pouch-type Na-ion batteries based on Prussian blue cathode [J]. Energy Storage Science and Technology, 2022, 11(7): 2030-2039. |
[2] | Yingwei PEI, Hong ZHANG, Xinghui WANG. Recent advances in the electrolytes of rechargeable zinc-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(7): 2075-2082. |
[3] | Sida HUO, Wendong XUE, Xinli LI, Yong LI. Visualization analysis of composite electrolytes for lithium battery based on CiteSpace [J]. Energy Storage Science and Technology, 2022, 11(7): 2103-2113. |
[4] | Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2022 to May 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(7): 2007-2022. |
[5] | ZHANG Yan, WANG Hai, LIU Zhaomeng, ZHANG Deliu, WANG Jiadong, LI Jianzhong, GAO Xuanwen, LUO Wenbin. Research progress of nickel-rich ternary cathode material ncm for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1693-1705. |
[6] | OU Yu, HOU Wenhui, LIU Kai. Research progress of smart safety electrolytes in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1772-1787. |
[7] | ZHOU Weidong, HUANG Qiu, XIE Xiaoxin, CHEN Kejun, LI Wei, QIU Jieshan. Research progress of polymer electrolyte for solid state lithium batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1788-1805. |
[8] | LI Yitao, SHEN Kaier, PANG Quanquan. Advance in organics enhanced sulfide-based solid-state batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1902-1918. |
[9] | ZHOU Wei, FU Dongju, LIU Weifeng, CHEN Jianjun, HU Zhao, ZENG Xierong. Research progress on recycling technology of waste lithium iron phosphate power battery [J]. Energy Storage Science and Technology, 2022, 11(6): 1854-1864. |
[10] | Ronghan QIAO, Guanjun CEN, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Feb. 1, 2022 to Mar. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(5): 1289-1304. |
[11] | Maolin FANG, Ying ZHANG, Lin QIAO, Shumin LIU, Zhongqi CAO, Huamin ZHANG, Xiangkun MA. Research progress of iron-chromium flow batteries technology [J]. Energy Storage Science and Technology, 2022, 11(5): 1358-1367. |
[12] | Chaochao WEI, Chuang YU, Zhongkai WU, Linfeng PENG, Shijie CHENG, Jia XIE. Research progress of Li3PS4 solid electrolyte [J]. Energy Storage Science and Technology, 2022, 11(5): 1368-1382. |
[13] | Honghui WANG, Zeqin WU, Deren CHU. Thermal behavior of lithium titanate based Li ion batteries under slight over-discharging condition [J]. Energy Storage Science and Technology, 2022, 11(5): 1305-1313. |
[14] | Zhicheng CHEN, Zongxu LI, Ling CAI, Yisi LIU. Development status and future prospects of flexible metal-air batteries [J]. Energy Storage Science and Technology, 2022, 11(5): 1401-1410. |
[15] | Xinyi WANG, Weijie LI, Chao HAN, Huakun LIU, Shixue DOU. Challenges and optimization strategies of the anode of aqueous zinc-ion battery [J]. Energy Storage Science and Technology, 2022, 11(4): 1211-1225. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||