Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (11): 4237-4244.doi: 10.19799/j.cnki.2095-4239.2025.0314
• Energy Storage Materials and Devices • Previous Articles Next Articles
Feng XIE1(
), Haijun MENG2, Xianzhang LEI3, Xinzhong LI4, Fei DING5, Zhigang SHAO1(
)
Received:2025-04-01
Revised:2025-04-29
Online:2025-11-28
Published:2025-11-24
Contact:
Zhigang SHAO
E-mail:xiefeng0794@dicp.ac.cn;zhgshao@dicp.ac.cn
CLC Number:
Feng XIE, Haijun MENG, Xianzhang LEI, Xinzhong LI, Fei DING, Zhigang SHAO. Research Progress of High-Efficiency Methanol Fuel Cell Technology[J]. Energy Storage Science and Technology, 2025, 14(11): 4237-4244.
Table 1
Comparison of various methanol fuel cell technologies"
| 名称 | 原理 | 电化学反应温度 | 综合电效率 | 特点 | 适用领域 |
|---|---|---|---|---|---|
| 直接甲醇燃料电池 | 通过电化学反应将甲醇水溶液的化学能转化为电能 | 室温~80 ℃ | 25%~35% | 装置结构简单、比能量高、启动快;贵金属催化剂用量高、电流密度低 | 便携式电源 |
| 甲醇重整纯化质子交换膜燃料电池 | 甲醇经重整、纯化制备高纯氢气,通过质子交换膜燃料电池发电 | 室温~100 ℃ | 35%~45% | 纯化技术多样,装置向小型化轻量化发展;发电余热难被制氢利用; | 各类电站 |
| 甲醇重整高温质子交换膜燃料电池 | 甲醇重整气不经纯化进入高温质子交换膜燃料电池发电 | 160~200 ℃ | 35%~45% | 产氢无需纯化,装置集成度较高,发电余热可部分被制氢利用 | 十千瓦级以内电站、增程器 |
| 甲醇固体氧化物燃料电池 | 甲醇在SOFC中内重整再发电 | 700-1000 ℃ | 30%~60% | 启动慢、启停次数受限,发电余热易被重整利用 | 长时持续供电电源 |
Table 2
Types and characteristics of reactions for hydrogen production by methanol reforming"
| 重整反应 | 反应式 | 反应温度 | 特点 | |
|---|---|---|---|---|
| 甲醇水蒸气重整 | CH3OH+H2O H2+CO2 | 约260 ℃或400 ℃ | 启动较慢,H2含量高,需要外部供热 | |
| 甲醇裂解制氢 | CH3OH | 约260 ℃ | 反应快,需要外部供热,易积碳、H2含量低 | |
| 部分氧化制氢 | CH3OH+1/2O2 | 约350 ℃ | 易启动、反应迅速,局部过热积碳、产物中H2含量低 | |
| 自热重整制氢 | CH3OH+(1-2a)H2O+aO2 | 0 | 约500 ℃[ | 易启动、反应快;局部过热积碳、H2含量低 |
| [1] | SHIH C F, ZHANG T, LI J H, et al. Powering the future with liquid sunshine[J]. Joule, 2018, 2(10): 1925-1949. DOI: 10.1016/j.joule. 2018.08.016. |
| [2] | SENGODAN S, LAN R, HUMPHREYS J, et al. Advances in reforming and partial oxidation of hydrocarbons for hydrogen production and fuel cell applications[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 761-780. DOI: 10.1016/j.rser.2017.09.071. |
| [3] | ANDERSSON J, GRÖNKVIST S. Large-scale storage of hydrogen[J]. International Journal of Hydrogen Energy, 2019, 44(23): 11901-11919. DOI: 10.1016/j.ijhydene.2019.03.063. |
| [4] | SHAARI N, KAMARUDIN S K, BAHRU R, et al. Progress and challenges: Review for direct liquid fuel cell[J]. International Journal of Energy Research, 2021, 45(5): 6644-6688. DOI: 10. 1002/er.6353. |
| [5] | VAN BIERT L, GODJEVAC M, VISSER K, et al. A review of fuel cell systems for maritime applications[J]. Journal of Power Sources, 2016, 327: 345-364. DOI: 10.1016/j.jpowsour. 2016. 07.007. |
| [6] | 孔晨华, 张建军, 李旺, 等. 燃料电池在无人机高压输电线路验电系统中的应用展望[J]. 储能科学与技术, 2024, 13(2): 492-494. DOI: 10.19799/j.cnki.2095-4239.2024.0012. |
| KONG C H, ZHANG J J, LI W, et al. Application prospect of fuel cell in UAVS high voltage transmission line checking system[J]. Energy Storage Science and Technology, 2024, 13(2): 492-494. DOI: 10.19799/j.cnki.2095-4239.2024.0012. | |
| [7] | XIA Z X, ZHANG X M, SUN H, et al. Recent advances in multi-scale design and construction of materials for direct methanol fuel cells[J]. Nano Energy, 2019, 65: 104048. DOI: 10.1016/j.nanoen. 2019.104048. |
| [8] | KAMARUDIN S K, ACHMAD F, DAUD W R W. Overview on the application of direct methanol fuel cell (DMFC) for portable electronic devices[J]. International Journal of Hydrogen Energy, 2009, 34(16): 6902-6916. DOI: 10.1016/j.ijhydene.2009.06.013. |
| [9] | ALIAS M S, KAMARUDIN S K, ZAINOODIN A M, et al. Active direct methanol fuel cell: An overview[J]. International Journal of Hydrogen Energy, 2020, 45(38): 19620-19641. DOI: 10.1016/j.ijhydene.2020.04.202. |
| [10] | TONG Y Y, YAN X, LIANG J, et al. Metal-based electrocatalysts for methanol electro-oxidation: Progress, opportunities, and challenges[J]. Small, 2021, 17(9): 1904126. DOI: 10.1002/smll. 201904126. |
| [11] | AHMAD ZAKIL F, KAMARUDIN S K, BASRI S. Modified Nafion membranes for direct alcohol fuel cells: An overview[J]. Renewable and Sustainable Energy Reviews, 2016, 65: 841-852. DOI: 10.1016/j.rser.2016.07.040. |
| [12] | CHIKUMBA F T, TAMER M, AKYALÇıN L, et al. The development of sulfonated polyether ether ketone (sPEEK) and titanium silicon oxide (TiSiO4) composite membranes for DMFC applications[J]. International Journal of Hydrogen Energy, 2023, 48(37): 14038-14052. DOI: 10.1016/j.ijhydene.2022.12.293. |
| [13] | LIU G L, TSEN W C, WEN S. Sulfonated silica coated polyvinylidene fluoride electrospun nanofiber-based composite membranes for direct methanol fuel cells[J]. Materials & Design, 2020, 193: 108806. DOI: 10.1016/j.matdes.2020.108806. |
| [14] | CUI Y H, LIU Y C, WU J W, et al. Porous silicon-aluminium oxide particles functionalized with acid moieties: An innovative filler for enhanced Nafion-based membranes of direct methanol fuel cell[J]. Journal of Power Sources, 2018, 403: 118-126. DOI: 10.1016/j.jpowsour.2018.09.090. |
| [15] | MCCONNELL V P. Fuel cells feed power-hungry portable electronics[J]. Fuel Cells Bulletin, 2009, 2009(6): 12-16. DOI: 10. 1016/S1464-2859(09)70197-X. |
| [16] | 杨敏, 裴向前, 郑建龙. 便携式燃料电池在军事上的应用[J]. 电源技术, 2013, 37(4): 696-699. |
| YANG M, PEI X Q, ZHENG J L. Military application of portable fuel cell[J]. Chinese Journal of Power Sources, 2013, 37(4): 696-699. | |
| [17] | 张振峰, 田心瑶, 孙海. Pt/MoCx的制备及其低温催化甲醇水蒸气重整制氢反应研究[J]. 应用化工, 2023, 52(9): 2556-2560, 2565. DOI: 10.16581/j.cnki.issn1671-3206.20230906.001. |
| ZHANG Z F, TIAN X Y, SUN H. Preparation of Pt/MoCx and its low-temperature catalytic steam reforming of methanol to hydrogen production[J]. Applied Chemical Industry, 2023, 52(9): 2556-2560, 2565. DOI: 10.16581/j.cnki.issn1671-3206. 20230906.001. | |
| [18] | 王胜年, 王树东, 吴迪镛, 等. 甲醇自热重整制氢反应分析[J]. 燃料化学学报, 2001, 29(3): 238-242. |
| WANG S N, WANG S D, WU D Y, et al. Analysis of autothermal reformer of H2 production for proton exchange membrane fuel cell vehicles[J]. Journal of Fuel Chemistry and Technology, 2001, 29(3): 238-242. | |
| [19] | 苏石龙, 张磊, 张艳, 等. 千瓦级PEMFC甲醇水蒸气重整制氢过程热力学模拟[J]. 石油化工高等学校学报, 2015, 28(2): 19-25. |
| SU S L, ZHANG L, ZHANG Y, et al. Thermodynamic simulation for hydrogen production in the methanol steam reforming system of kilowatt PEMFC[J]. Journal of Petrochemical Universities, 2015, 28(2): 19-25. | |
| [20] | 周伟, 李新颖, 钟雨晨, 等. 甲醇重整制氢微反应器的研究进展[J]. 厦门大学学报(自然科学版), 2021, 60(3): 598-613. |
| ZHOU W, LI X Y, ZHONG Y C, et al. Research progress of methanol steam reforming microreactors for hydrogen production[J]. Journal of Xiamen University (Natural Science), 2021, 60(3): 598-613. | |
| [21] | ZHAO K, TIAN Z Y, ZHANG J R, et al. Methanol steam reforming reactor with fractal tree-shaped structures for photovoltaic-thermochemical hybrid power generation[J]. Applied Energy, 2023, 330: 120220. DOI: 10.1016/j.apenergy.2022.120220. |
| [22] | 亓爱笃, 王树东, 洪学伦, 等. 甲醇氧化重整制氢过程(Ⅰ)反应条件对制氢过程的影响[J]. 化工学报, 2001, 52(12): 1095-1099. |
| QI A D, WANG S D, HONG X L, et al. On-board hydrogen generation by methanol partial oxidation(i) effect of reaction conditions on gross heat efficiency[J]. Journal of Chemical Industry and Engineering (China), 2001, 52(12): 1095-1099. | |
| [23] | 刘园园. 绿色能源和循环经济双翅飞翔—记醇水氢燃料电池一体机[Z]. 科技日报. 2017-01-10. |
| LIU Y Y. Green energy and circular economy soaring on dual wings: a report on alcohol-water hydrogen fuel cell integrated units [Z]. Science and Technology Daily. 2017-01-10. | |
| [24] | 徐润, 栾学斌, 夏国富, 等. 模块化分布式甲醇制氢系统开发和站内制氢实践[J]. 石油炼制与化工, 2023, 54(11): 1-7. |
| XU R, LUAN X B, XIA G F, et al. Development of a modular distributed system for hydrogen production from methanol and application in the hydrogen refueling station[J]. Petroleum Processing and Petrochemicals, 2023, 54(11): 1-7. | |
| [25] | AILI D, HENKENSMEIER D, MARTIN S, et al. Polybenzi-midazole-based high-temperature polymer electrolyte membrane fuel cells: New insights and recent progress[J]. Electrochemical Energy Reviews, 2020, 3(4): 793-845. DOI: 10.1007/s41918-020-00080-5. |
| [26] | AVGOUROPOULOS G, PAXINOU A, NEOPHYTIDES S. In situ hydrogen utilization in an internal reforming methanol fuel cell[J]. International Journal of Hydrogen Energy, 2014, 39(31): 18103-18108. DOI: 10.1016/j.ijhydene.2014.03.101. |
| [27] | PAPAVASILIOU J, SCHÜTT C, KOLB G, et al. Technological aspects of an auxiliary power unit with internal reforming methanol fuel cell[J]. International Journal of Hydrogen Energy, 2019, 44(25): 12818-12828. DOI: 10.1016/j.ijhydene.2018.11.136. |
| [28] | DOKAMAINGAM P, ASSABUMRUNGRAT S, SOOTTITAN-TAWAT A, et al. Effect of operating conditions and gas flow patterns on the system performances of IIR-SOFC fueled by methanol[J]. International Journal of Hydrogen Energy, 2009, 34(15): 6415-6424. DOI: 10.1016/j.ijhydene.2009.05.105. |
| [29] | GUAN G Q, FUSHIMI C, TSUTSUMI A, et al. High-density circulating fluidized bed gasifier for advanced IGCC/IGFC—Advantages and challenges[J]. Particuology, 2010, 8(6): 602-606. DOI: 10.1016/j.partic.2010.07.013. |
| [30] | 韩婷婷, 吴玉玺, 解子恒, 等. 固体氧化物燃料电池镍基阳极积碳机理及性能提升策略研究进展[J]. 储能科学与技术, 2021, 10(6): 1931-1942. DOI: 10.19799/j.cnki.2095-4239.2021.0148. |
| HAN T T, WU Y X, XIE Z H, et al. Recent advances in carbon deposition mechanism and performance improvement of Ni-based anode for solid oxide fuel cells[J]. Energy Storage Science and Technology, 2021, 10(6): 1931-1942. DOI: 10.19799/j.cnki. 2095-4239.2021.0148. | |
| [31] | SASAKI K, TERAOKA Y. Equilibria in fuel cell gases[J]. Journal of the Electrochemical Society, 2003, 150(7): A885. DOI: 10.1149/1. 1577338. |
| [32] | 陶泽宇, 刘航成, 刘建峰, 等. 燃料电池非铂基催化剂的研究进展[J]. 电池, 2024, 54(1): 103-106. DOI:10.19535/j.1001-1579.2024.01.023. |
| TAO Z Y, LIU H C, LIU J F, et al. Research progress in non-platinum-based catalysts for fuel cell[J]. Dianchi(Battery Bimonthly), 2024, 54(1): 103-106. DOI:10.19535/j.1001-1579.2024.01.023. | |
| [33] | 刘鑫宇, 张安安, 廖长江. 不同支撑结构的固体氧化物燃料电池数值模拟分析[J]. 储能科学与技术, 2024, 13(5): 1710-1720. DOI: 10. 19799/j.cnki.2095-4239.2023.0855. |
| LIU X Y, ZHANG An'an, LIAO C J. Numerical simulation analysis of solid oxide fuel cells with different support structures[J]. Energy Storage Science and Technology, 2024, 13(5): 1710-1720. DOI: 10.19799/j.cnki.2095-4239.2023.0855. | |
| [34] | ZHOU J Y, WANG Z, HAN M F, et al. Optimization of a 30 kW SOFC combined heat and power system with different cycles and hydrocarbon fuels[J]. International Journal of Hydrogen Energy, 2022, 47(6): 4109-4119. DOI: 10.1016/j.ijhydene.2021.11.049. |
| [35] | 李萍萍, 陈姗姗, 赵璐璐, 等. 整体煤气化固体氧化物燃料电池并网测试系统设计[J]. 储能科学与技术, 2021, 10(6): 2039-2045. DOI: 10.19799/j.cnki.2095-4239.2021.0100. |
| LI P P, CHEN S S, ZHAO L L, et al. Test design of integrated gasification solid oxide fuel cell(IG-SOFC) grid-connection technology[J]. Energy Storage Science and Technology, 2021, 10(6): 2039-2045. DOI: 10.19799/j.cnki.2095-4239.2021.0100. |
| [1] | Ye CHEN, Jin LI, Ruilani ZHAO, Shaoyu ZHANG, Yuxi CHU, Kang YANG, Xiaoxue LIAO, Bo JIANG, Ping ZHUO. Comparative experimental study on thermal runaway propagation of battery modules under different states of charge [J]. Energy Storage Science and Technology, 2025, 14(9): 3402-3413. |
| [2] | Juqiang FENG, Chengzhi ZHANG, Yuhang CHEN. A high-precision SOC and temperature joint estimation method based on rapid prototype modeling [J]. Energy Storage Science and Technology, 2025, 14(9): 3567-3580. |
| [3] | Yali WANG, Xiaoyan LI, Hangyu SUN, Yunfeng FU, Zhaobo LIU, Guoshan DU, Jun LIU, Songxuan CHEN, Mengmeng HU. Research progress of supports for solid oxide fuel cells [J]. Energy Storage Science and Technology, 2025, 14(7): 2590-2601. |
| [4] | Yongzhao LI, Tianyi MA, Han YOU, Xiaobo LI, Ronggui YANG. High-temperature stability of solar salt and Hitec under air atmosphere [J]. Energy Storage Science and Technology, 2025, 14(7): 2813-2819. |
| [5] | Wenrui WANG, Jiahao HAO, Pingyang Zheng, Yunkai YUE, Junling YANG, Zhentao ZHANG. Design and thermoeconomic assessments of CO2 Carnot battery employing sensible heat storage at high temperatures [J]. Energy Storage Science and Technology, 2025, 14(7): 2714-2728. |
| [6] | Fankang MENG, Dongkun PENG, Peng CAI. Simulation of the heat storage and release performance of a phase-change solar greenhouse in a severely cold area [J]. Energy Storage Science and Technology, 2025, 14(6): 2532-2539. |
| [7] | Dandan HAN, Wuwei ZHANG, Liang ZHANG, Zongjiang WANG. Design and electrochemical performance of LiMn1-y Fe y PO4/C cathode materials with a core-shell structure [J]. Energy Storage Science and Technology, 2025, 14(6): 2215-2222. |
| [8] | Gongrui WANG, Anping ZHANG, Xuanxuan REN, Mingzhe YANG, Yuning HAN, Zhongshuai WU. High-voltage lithium cobalt oxide cathode: Key challenges, modification strategies and future prospectives [J]. Energy Storage Science and Technology, 2025, 14(6): 2278-2319. |
| [9] | Xiaoru XU, Jianzhen OU, Jiawei LIU, Zhicong CHEN, Hao YE, Yinglong LIU, Yingli LIU, Zeyu LIN, Jingjing LIU, Junhui JIAN, Xu LUO, Jingmin FAN, Chao WANG, Libin LEI, Bo LIANG. Direct ammonia tubular fuel cell with an embedded microchannel ceramic cracking reactor [J]. Energy Storage Science and Technology, 2025, 14(5): 1818-1828. |
| [10] | Yifei WANG, Fan XU, Liang WANG, Xingjian DAI, Yujie XU, Haisheng CHEN. Analysis and design on stator heat dissipation of motor in flywheel energy storage system [J]. Energy Storage Science and Technology, 2025, 14(5): 1946-1953. |
| [11] | Shunxin LIU, Haoyang LI, Jianxing ZHANG, Guang ZENG, Lingping XU. A study on the synergistic optimization of flow channel structures and guide plates in a 280 Ah air-cooled battery pack for energy storage [J]. Energy Storage Science and Technology, 2025, 14(5): 1806-1817. |
| [12] | Jintao WU, Yongjun ZHOU, Xu YANG, Chenxin DENG, Yiming HAN. Numerical simulation of the fire suppression effect of fine water mist on electric vehicles [J]. Energy Storage Science and Technology, 2025, 14(5): 2098-2105. |
| [13] | Chenglong JIN, Mengting SUN, Qingfei MENG, Shuwei ZHANG, Zhou ZHOU, Yuyang QI. Design and application of wide-temperature electrolytes for Li/Cr8O21 batteries [J]. Energy Storage Science and Technology, 2025, 14(4): 1369-1376. |
| [14] | Yakun LIU, Siyuan SHEN, Wenyan LEI, Jiaxin GAO, Denghui JIN, Yujun LI, Donghuang LUO, Wei HAO, Zheng LIANG. Temperature rise response of cylindrical lithium-ion cells to surge current [J]. Energy Storage Science and Technology, 2025, 14(4): 1574-1584. |
| [15] | Yangfeng WANG, Bo REN, Hongtao WANG, Shuandi HOU. Research progress on key technologies and industrialization of carbon fiber paper for proton exchange membrane fuel cells [J]. Energy Storage Science and Technology, 2025, 14(3): 984-996. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||