Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (11): 4330-4345.doi: 10.19799/j.cnki.2095-4239.2025.0490
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Jieyang WEI1(
), Jiangwei SHEN1(
), Zheng CHEN1, Fuxing WEI1, Xuelei XIA1, Yonggang LIU2
Received:2025-05-26
Revised:2025-06-24
Online:2025-11-28
Published:2025-11-24
Contact:
Jiangwei SHEN
E-mail:1391905816@qq.com;shenjiangwei6@kust.edu.cn
CLC Number:
Jieyang WEI, Jiangwei SHEN, Zheng CHEN, Fuxing WEI, Xuelei XIA, Yonggang LIU. Adaptive prediction of charging duration for different modes of electric vehicles based on a deep feature fusion model[J]. Energy Storage Science and Technology, 2025, 14(11): 4330-4345.
| [1] | GIL-GARCÍA I C, GARCÍA-CASCALES M S, DAGHER H, et al. Electric vehicle and renewable energy sources: Motor fusion in the energy transition from a multi-indicator perspective[J]. Sustainability, 2021, 13(6): 3430. DOI: 10.3390/su13063430. |
| [2] | SHEN J W, ZHANG Z, SHEN S Q, et al. Accurate state of temperature estimation for lithium-Ion batteries based on square root cubature Kalman filter[J]. Applied Thermal Engineering, 2024, 242: 122452. DOI: 10.1016/j.applthermaleng.2024.122452. |
| [3] | TAO Y C, QIU J, LAI S Y, et al. Adaptive integrated planning of electricity networks and fast charging stations under electric vehicle diffusion[J]. IEEE Transactions on Power Systems, 2023, 38(1): 499-513. DOI: 10.1109/TPWRS.2022.3167666. |
| [4] | EDDINE M D, SHEN Y M. A deep learning based approach for predicting the demand of electric vehicle charge[J]. The Journal of Supercomputing, 2022, 78(12): 14072-14095. DOI: 10.1007/s11227-022-04428-0. |
| [5] | YAGHOUBI E, YAGHOUBI E, KHAMEES A, et al. A systematic review and meta-analysis of machine learning, deep learning, and ensemble learning approaches in predicting EV charging behavior[J]. Engineering Applications of Artificial Intelligence, 2024, 135: 108789. DOI: 10.1016/j.engappai.2024.108789. |
| [6] | 申江卫, 刘伟强, 高承志, 等. 宽温度环境下基于迁移模型的锂电池组SOC估计[J]. 中国公路学报, 2024, 37(5): 383-396. DOI: 10. 19721/j.cnki.1001-7372.2024.05.025. |
| SHEN J W, LIU W Q, GAO C Z, et al. State of charge estimation of lithium battery packs in wide temperature environments based on migration model[J]. China Journal of Highway and Transport, 2024, 37(5): 383-396. DOI: 10.19721/j.cnki.1001-7372.2024.05.025. | |
| [7] | SUBASHINI M, SUMATHI V. Smart algorithms for power prediction in smart EV charging stations[J]. Journal of Engineering Research, 2024, 12(2): 124-134. DOI: 10.1016/j.jer.2023.11.028. |
| [8] | ADAIKKAPPAN M, SATHIYAMOORTHY N. Modeling, state of charge estimation, and charging of lithium-ion battery in electric vehicle: A review[J]. International Journal of Energy Research, 2022, 46(3): 2141-2165. DOI: 10.1002/er.7339. |
| [9] | RAGONE M, YURKIV V, RAMASUBRAMANIAN A, et al. Data driven estimation of electric vehicle battery state-of-charge informed by automotive simulations and multi-physics modeling[J]. Journal of Power Sources, 2021, 483: 229108. DOI: 10.1016/j.jpowsour.2020.229108. |
| [10] | SHI J Z, TIAN M, HAN S, et al. Electric vehicle battery remaining charging time estimation considering charging accuracy and charging profile prediction[J]. Journal of Energy Storage, 2022, 49: 104132. DOI: 10.1016/j.est.2022.104132. |
| [11] | ZHOU B R, FAN G D, WANG Y S, et al. Life-extending optimal charging for lithium-ion batteries based on a multi-physics model and model predictive control[J]. Applied Energy, 2024, 361: 122918. DOI: 10.1016/j.apenergy.2024.122918. |
| [12] | OEHLER F F, NÜRNBERGER K, STURM J, et al. Embedded real-time state observer implementation for lithium-ion cells using an electrochemical model and extended Kalman filter[J]. Journal of Power Sources, 2022, 525: 231018. DOI: 10.1016/j.jpowsour. 2022.231018. |
| [13] | POWELL S, VIANNA CEZAR G, APOSTOLAKI-IOSIFIDOU E, et al. Large-scale scenarios of electric vehicle charging with a data-driven model of control[J]. Energy, 2022, 248: 123592. DOI: 10.1016/j.energy.2022.123592. |
| [14] | ZHAO Y, WANG Z P, SHEN Z M, et al. Data-driven framework for large-scale prediction of charging energy in electric vehicles[J]. Applied Energy, 2021, 282: 116175. DOI: 10.1016/j.apenergy. 2020.116175. |
| [15] | ALMAGHREBI A, ALJUHESHI F, RAFAIE M, et al. Data-driven charging demand prediction at public charging stations using supervised machine learning regression methods[J]. Energies, 2020, 13(16): 4231. DOI: 10.3390/en13164231. |
| [16] | ULLAH I, LIU K, YAMAMOTO T, et al. Grey wolf optimizer-based machine learning algorithm to predict electric vehicle charging duration time[J]. Transportation Letters, 2023, 15(8): 889-906. DOI: 10.1080/19427867.2022.2111902. |
| [17] | SHAHRIAR S, AL-ALI A R, OSMAN A H, et al. Prediction of EV charging behavior using machine learning[J]. IEEE Access, 2021, 9: 111576-111586. |
| [18] | YI Z Y, LIU X C, WEI R, et al. Electric vehicle charging demand forecasting using deep learning model[J]. Journal of Intelligent Transportation Systems, 2022, 26(6): 690-703. DOI: 10.1080/15472450.2021.1966627. |
| [19] | 王毅, 谷亿, 丁壮, 等. 基于模糊熵和集成学习的电动汽车充电需求预测[J]. 电力系统自动化, 2020, 44(3): 114-121. |
| WANG Y, GU Y, DING Z, et al. Charging demand forecasting of electric vehicle based on empirical mode decomposition-fuzzy entropy and ensemble learning[J]. Automation of Electric Power Systems, 2020, 44(3): 114-121. | |
| [20] | ULLAH I, LIU K, YAMAMOTO T, et al. Prediction of electric vehicle charging duration time using ensemble machine learning algorithm and Shapley additive explanations[J]. International Journal of Energy Research, 2022, 46(11): 15211-15230. DOI: 10.1002/er.8219. |
| [21] | 胡杰, 陈琳, 王志红, 等. 基于Transformer的纯电动汽车充电时间预测[J]. 汽车工程, 2024, 46(11): 2059-2067. DOI: 10.19562/j.chinasae. qcgc.2024.11.012. |
| HU J, CHEN L, WANG Z H, et al. Transformer-based prediction of charging time for pure electric vehicles[J]. Automotive Engineering, 2024, 46(11): 2059-2067. DOI: 10.19562/j.chinasae.qcgc.2024. 11.012. | |
| [22] | 陈媛, 章思源, 蔡宇晶, 等. 融合多项式特征扩展与CNN-Transformer模型的锂电池SOH估计[J]. 储能科学与技术, 2024, 13(9): 2995-3005. DOI: 10.19799/j.cnki.2095-4239.2024.0465. |
| CHEN Y, ZHANG S Y, CAI Y J, et al. State-of-health estimation of lithium batteries based on polynomial feature extension of the CNN-transformer model[J]. Energy Storage Science and Technology, 2024, 13(9): 2995-3005. DOI: 10.19799/j.cnki.2095-4239.2024.0465. | |
| [23] | PIAS T S, EISENBERG D, FRESNEDA FERNANDEZ J. Accuracy improvement of vehicle recognition by using smart device sensors[J]. Sensors, 2022, 22(12): 4397. DOI: 10.3390/s22124397. |
| [24] | 时珊珊, 王凯, 张宇, 等. 城市轨道交通混合储能系统无源性协同控制方法[J]. 储能科学与技术, 2024, 13(11): 4040-4052. DOI: 10. 19799/j.cnki.2095-4239.2024.0516. |
| SHI S S, WANG K, ZHANG Y, et al. Collaborative passivity-based control method for hybrid energy storage systems in urban rail transit[J]. Energy Storage Science and Technology, 2024, 13(11): 4040-4052. DOI: 10.19799/j.cnki.2095-4239.2024.0516. | |
| [25] | 宾涛. 电动汽车混合充换电站选址定容建模及求解[D]. 重庆: 重庆交通大学, 2024. DOI: 10.27671/d.cnki.gcjtc.2024.000200. |
| BIN T. Modeling and solution of site selection and constant volume of hybrid charging and replacing power station for electric vehicle[D]. Chongqing: Chongqing Jiaotong University, 2024. DOI: 10.27671/d.cnki.gcjtc.2024.000200. | |
| [26] | 李兴建. 电动汽车充电桩运行管理系统设计与实现[D]. 成都: 电子科技大学, 2020. DOI: 10.27005/d.cnki.gdzku.2020.004222. |
| LI X J. Design and implementation of electric vehicle charging station operation management system[D]. Chengdu: University of Electronic Science and Technology of China, 2020. DOI: 10. 27005/d.cnki.gdzku.2020.004222. | |
| [27] | 王明深, 袁晓冬, 曾飞, 等. 电动汽车充电设施规划运行关键技术研究综述[J]. 电力自动化设备, 2025, 45(5): 65-76. DOI: 10.16081/j.epae.202502002. |
| WANG M S, YUAN X D, ZENG F, et al. Review of key technologies research for electric vehicle charging facilities planning and scheduling[J]. Electric Power Automation Equipment, 2025, 45(5): 65-76. DOI: 10.16081/j.epae.202502002. | |
| [28] | NASKATH J, SIVAKAMASUNDARI G, BEGUM A A S. A study on different deep learning algorithms used in deep neural nets: MLP SOM and DBN[J]. Wireless Personal Communications, 2023, 128(4): 2913-2936. DOI: 10.1007/s11277-022-10079-4. |
| [29] | AZAD M A K, MALLICK J, ISLAM A R M T, et al. Estimation of solar radiation in data-scarce subtropical region using ensemble learning models based on a novel CART-based feature selection[J]. Theoretical and Applied Climatology, 2024, 155(1): 349-369. DOI: 10.1007/s00704-023-04638-3. |
| [30] | 李旭东, 张向文. 基于主成分分析与WOA-Elman的锂离子电池SOH估计[J]. 储能科学与技术, 2022, 11(12): 4010-4021. DOI: 10. 19799/j.cnki.2095-4239.2022.0384. |
| LI X D, ZHANG X W. State of health estimation method for lithium-ion batteries based on principal component analysis and whale optimization algorithm-Elman model[J]. Energy Storage Science and Technology, 2022, 11(12): 4010-4021. DOI: 10.19799/j.cnki.2095-4239.2022.0384. | |
| [31] | ZHANG Y, SHI X H, ZHANG H X, et al. Review on deep learning applications in frequency analysis and control of modern power system[J]. International Journal of Electrical Power & Energy Systems, 2022, 136: 107744. DOI: 10.1016/j.ijepes.2021.107744. |
| [32] | 刘素贞, 袁路航, 张闯, 等. 基于超声时域特征及随机森林的磷酸铁锂电池荷电状态估计[J]. 电工技术学报, 2022, 37(22): 5872-5885. DOI: 10.19595/j.cnki.1000-6753.tces.211585. |
| LIU S Z, YUAN L H, ZHANG C, et al. State of charge estimation of LiFeO4 batteries based on time domain features of ultrasonic waves and random forest[J]. Transactions of China Electrotechnical Society, 2022, 37(22): 5872-5885. DOI: 10.19595/j.cnki.1000-6753.tces. 211585. | |
| [33] | THAJEEL I K, SAMSUDIN K, HASHIM S J, et al. Machine and deep learning-based XSS detection approaches: A systematic literature review[J]. Journal of King Saud University - Computer and Information Sciences, 2023, 35(7): 101628. DOI: 10.1016/j.jksuci.2023.101628. |
| [34] | 韩毅, 侯震梅. 基于RF-RFECV特征选择的BO-CNN-BiLSTM-attention中国资源型城市碳排放影响因素分析与达峰情景模拟[J/OL]. 环境科学, 2025: 1-26. (2025-05-14). https://link.cnki.net/doi/10.13227/j.hjkx.202501278. |
| HAN Y, HOU Z M. BO-CNN-BiLSTM-attention based on RF-RFECV feature selection analysis and peak simulation of carbon emissions in resource-based cities of China[J/OL]. Environmental Science, 2025: 1-26. (2025-05-14). https://link.cnki.net/doi/10. 13227/j.hjkx.202501278. |
| [1] | Xiuwen TAN, Ling LI. Study on the thermal runaway characteristics of lithium-ion batteries and their thermal management under local overheating conditions [J]. Energy Storage Science and Technology, 2025, 14(9): 3521-3529. |
| [2] | Wenyan CHEN, Ruilin HE, Jian CHANG, Yonghong DENG. Investigation of lithium storage mechanisms in liquid metal electrodes with different morphologies [J]. Energy Storage Science and Technology, 2025, 14(9): 3290-3300. |
| [3] | Yan ZHAO, Hao LIU, Zonglin YI, Li LI, Lijing XIE, Fangyuan SU. Interfacial behavior of FEC and VC at graphite anode of lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(9): 3249-3258. |
| [4] | Jijin LIN, Qian LIU, Tao QU, Jingkun LI, Dongyong HUANG, Xiaoqing ZHU, Xing JU. Technical and economic analysis of liquid immersion cooling for lithium-ion battery energy storage system [J]. Energy Storage Science and Technology, 2025, 14(9): 3622-3635. |
| [5] | Juqiang FENG, Chengzhi ZHANG, Yuhang CHEN. A high-precision SOC and temperature joint estimation method based on rapid prototype modeling [J]. Energy Storage Science and Technology, 2025, 14(9): 3567-3580. |
| [6] | Xiaoyu BAI, Yajing YAN, Zhirong ZHANG, Lingli KONG. Research on the performance of composite graphite lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(9): 3259-3268. |
| [7] | Lei ZHANG. Operating status monitoring and evaluation of lithium-ion battery energy storage power stations [J]. Energy Storage Science and Technology, 2025, 14(9): 3538-3540. |
| [8] | Xinyu BAO, Xiangdong KONG, Taolin LV, Zhicheng ZHU, Xuebing HAN, Xin LAI, Yuejiu ZHENG, Tao SUN. Battery internal resistance prediction and rapid sorting method based on production line big data [J]. Energy Storage Science and Technology, 2025, 14(9): 3541-3551. |
| [9] | Chengshan XU, Ye SUN, Zhikai YANG, Mingqiang ZHAO, Yalun LI, Xuning FENG, Hewu WANG, Languang LU, Minggao OUYANG. Research progress on arc induced by thermal runaway in lithium-ion battery systems for energy storage [J]. Energy Storage Science and Technology, 2025, 14(8): 3037-3050. |
| [10] | Pengju LI, Xiaoyu CHEN, Jia XIE, Jiani SHEN, Yijun HE. Research progress on state of power prediction methods for lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(8): 3028-3036. |
| [11] | Liyue HU, Wei HUANG, Yun ZHOU, Yingqiang ZHOU, Changzheng SHAO, Ke WANG. Fuzzy reasoning-based evaluation of the thermal diffusion probability of lithium-ion battery modules for energy storage systems [J]. Energy Storage Science and Technology, 2025, 14(7): 2662-2674. |
| [12] | Feng XIONG, Depeng KONG, Ping PING, Yue ZHANG, Xiantong REN, Yao LV. Study on the characteristics of electrothermal coupling-induced thermal runaway of ternary lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(7): 2752-2760. |
| [13] | Wenyuan WENG, Bin SHEN, Jiangong ZHU, Yang WANG, Huapeng LU, Wuliyasu HE, Haonan LIU, Haifeng DAI, Xuezhe WEI. Detecting hazardous lithium plating on anodes of lithium-ion batteries—A review of in situ methods [J]. Energy Storage Science and Technology, 2025, 14(7): 2575-2589. |
| [14] | Zijing ZHANG, Beibei YUAN, Hong LI, Ying GAO. Thermal runaway gas detection and early warning of lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(7): 2820-2832. |
| [15] | Jiahui LIU, Weixiang BIAN, Dawei LI. In situ measurement and analysis of the electromechanical coupling performance of composite graphite electrodes in lithium batteries [J]. Energy Storage Science and Technology, 2025, 14(6): 2240-2247. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||