Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (9): 3229-3248.doi: 10.19799/j.cnki.2095-4239.2025.0758
• Research Highlight • Previous Articles Next Articles
Xinxin ZHANG1(), Guanjun CEN1, Ronghan QIAO1, Junfeng HAO1, Qiangfu SUN1, Bowen ZHENG1, Yuhao GU1, Mengyu TIAN2, Zhou JIN2, Yuanjie ZHAN2, Yong YAN2, Liubin BEN1,2, Hailong YU1, Yanyan LIU1, Hong ZHOU3, Xueji HUANG1,2(
)
Received:
2025-08-22
Online:
2025-09-28
Published:
2025-09-05
Contact:
Xueji HUANG
E-mail:zhangxinxin223@mails.ucas.ac.cn;xjhuang@iphy.ac.cn
CLC Number:
Xinxin ZHANG, Guanjun CEN, Ronghan QIAO, Junfeng HAO, Qiangfu SUN, Bowen ZHENG, Yuhao GU, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Hong ZHOU, Xueji HUANG. Reviews of selected 100 recent papers for lithium batteries (June 1, 2025 to July 31, 2025)[J]. Energy Storage Science and Technology, 2025, 14(9): 3229-3248.
[1] | LIANG Y Z, XUE H Y, ZHAN M Z, et al. Stationary oxygen vacancy construction toward a superior-performance ultrahigh nickel single-crystal cathode[J]. ACS Nano, 2025, 19(28): 25879-25889. DOI: 10.1021/acsnano.5c05412. |
[2] | WANG B, LI K, XU G, et al. Mechanically and chemically co-robust Ni-rich cathodes with ultrahigh capacity and prolonged cycle life[J]. Angewandte Chemie International Edition, 2025, 64(30): e202502725. DOI: 10.1002/anie.202502725. |
[3] | LIM J, SONNI M, DANIELS L M, et al. High rate capability and cycling stability in multi-domain nanocomposite LiNi1- xTi3 x/4O2 positive electrodes[J]. Advanced Materials, 2025, 2417899. DOI: 10.1002/adma.202417899. |
[4] | ZHENGC L, WANG Y Q, MAO H C, et al. Superexchange interaction regulates Ni/Mn spin states triggering Ni-t2g/O-2p reductive coupling enabling stable lithium-rich cathode[J]. Nature Communications, 2025, 16: 3900. DOI: 10.1038/s41467-025-59159-6. |
[5] | PATHERIA E S, GUZMAN P, et al. High-energy density Li-ion battery cathode using only industrial elements[J]. Journal of the American Chemical Society, 2025, 147(11): 9786-9799. DOI: 10. 1021/jacs.4c18440. |
[6] | WANG Y, SUN T R, BI L N, et al. Realizing ultra-fast ionic transport in the cost-effective chlorospinel cathode for all-solid-state lithium-ion batteries[J]. Electrochimica Acta, 2025, 533: 146521. DOI: 10.1016/j.electacta.2025.146521. |
[7] | ZHANG K, YANG T H,CHEN T, et al. An amorphous Li-V-O-F cathode with tetrahedral coordination and O-O formal redox at low voltage[J]. Nature Materials, 2025: 1-8. DOI: 10.1038/s41563-025-02293-9. |
[8] | HE J X, DENG Y Z, HAN J W, et al. Sieving pore design enables stable and fast alloying chemistry of silicon negative electrodes in Li-ion batteries[J]. Nature Communications, 2025, 16: 4858. DOI: 10.1038/s41467-025-60191-9. |
[9] | KIM C, MUN S, PARK J, et al. Sulfur-based hybrid multilayers on Li metal anodes with excellent air stability for ultralong-life and high-performance batteries[J]. Journal of Materials Chemistry A, 2025, 13(5): 3882-3893. DOI: 10.1039/D4TA07649D. |
[10] | WANG X C, ZHANG B,CHEN Z H, et al. Achieving a higher lithium density in anodes surpassing that of pure metallic lithium for high-energy-density batteries[J]. Energy & Environmental Science, 2025, 18(11): 5365-5377. DOI: 10.1039/D4EE05289G. |
[11] | BECKER J, WEINTRAUT T, BENZ S L, et al. Purity of lithium metal electrode and its impact on lithium stripping in solid-state batteries[J]. Nature Communications, 2025, 16: 5395. DOI: 10. 1038/s41467-025-61006-7. |
[12] | CHEN X Y, JIANG M, DU X Y, et al. Li2O-enhanced solid electrolyte interphase surpassing LiF-only SEI for high-performance all-solid-state Li batteries[J]. Advanced Energy Materials, 2025,2502589. DOI: 10.1002/aenm. 202502589. |
[13] | QU Y P, SU C, WANG L, et al. Interface engineered electrolyte design strategy for ultralong-cycle solid-state lithium batteries over wide temperature range[J]. Angewandte Chemie International Edition, 2025, 64(27): e202506731. DOI: 10.1002/anie. 202506731. |
[14] | ZHU Q N, YANG K,CHEN L K, et al. Activating interfacial ion exchange in composite electrolytes to realize high-rate and long-cycling solid-state lithium batteries[J]. Angewandte Chemie International Edition, 2025, 64(23): e202425221. DOI: 10.1002/anie.202425221. |
[15] | WU J X, YOU Z C, LI M, et al. Synergistic reduction and oxidation resistant interface modifier for high-voltage and high-loading solid-state lithium batteries[J]. Advanced Energy Materials, 2025, 15(9): 2403585. DOI: 10.1002/aenm.202403585. |
[16] | HAN Z S, ZHANG R H, JIANG J L, et al. High-efficiency lithium-ion transport in a porous coordination chain-based hydrogen-bonded framework[J]. Journal of the American Chemical Society, 2023, 145(18): 10149-10158. DOI: 10.1021/jacs.3c00647. |
[17] | LI M, HUANG Z M, LIANG Y H, et al. Accelerating lithium-ion transfer and sulfur conversion via electrolyte engineering for ultra-stable all-solid-state lithium-sulfur batteries[J]. Advanced Functional Materials, 2025, 35(3): 2413580. DOI: 10.1002/adfm. 202413580. |
[18] | GONG J J, PENG Q M, ZHAO S S, et al. Built-in single-ion-conducting polymer bridges for superior ion transport enabling long-life and high-voltage lithium-metal batteries[J]. Energy & Environmental Science, 2025, 18(11): 5511-5523. DOI: 10.1039/D5EE01338K. |
[19] | KWON G, GWON H, BAE Y, et al. Disorder-driven sintering-free garnet-type solid electrolytes[J]. Nature Communications, 2025, 16: 3256. DOI: 10.1038/s41467-025-58108-7. |
[20] | YI S S, ZHOU S Y, LIU Y D, et al. Achieving high ionic conductivity of LATP solid electrolyte via a LiTFSI-assisted cold sintering process[J]. Journal of Materials Chemistry A, 2024, 12(46): 32298-32306. DOI: 10.1039/D4TA06731B. |
[21] | LI W H, LI M S, WANG S, et al. Superionic conducting vacancy-rich β-Li3N electrolyte for stable cycling of all-solid-state lithium metal batteries[J]. Nature Nanotechnology, 2024, 20(2): 265-275. DOI: 10.1038/s41565-024-01813-z. |
[22] | LANDGRAF V, TU M F, ZHAO W X, et al. Disorder-mediated ionic conductivity in irreducible solid electrolytes[J]. Journal of the American Chemical Society, 2025, 147(22): 18840-18852. DOI: 10.1021/jacs.5c02784. |
[23] | HOLMES S E, UNIVERSITY S, KONDEK J, et al. LiI-modified glass-ceramic lithium thioborate: From fundamentals to applications in solid-state batteries[J].Chemistry of Materials, 2025, 37(7): 2642-2649. DOI: 10.1021/acs.chemmater.5c00224. |
[24] | KAWAGUCHI S, FUKIYA N, EHARA K, et al. Highly deformable, ion-conductive borohydride-substituted sulfide electrolyte for superior performance at low stack pressure[J]. Advanced Materials, 2025, e07963. DOI: 10.1002/adma. 202507963. |
[25] | SHEN K E, SHI W Z, SONG H M, et al. Solid catholyte with regulated interphase redox for all-solid-state lithium-sulfur batteries[J]. Advanced Materials, 2025, 37(11): 2417171. DOI: 10.1002/adma.202417171. |
[26] | KIM K T, KIM J S, BAECK K H, et al. Surface fluorination shielding of sulfide solid electrolytes for enhanced electrochemical stability in all-solid-state batteries[J]. Advanced Materials, 2025, 2416816. DOI: 10.1002/adma. 202416816. |
[27] | ZHANG W R, WANG Z Y, WAN H L, et al. Revitalizing interphase in all-solid-state Li metal batteries by electrophile reduction[J]. Nature Materials, 2025, 24(3): 414-423. DOI: 10.1038/s41563-024-02064-y. |
[28] | ZHANG H C, YU P C,CUI Z A, et al. Enhancing compatibility of halide with sulfide-electrolytes via high oxygen incorporation for robust solid-state batteries[J]. Advanced Functional Materials, 2025, e10497. DOI: 10.1002/adfm.202510497. |
[29] | WANG S, ZHOU Y Q, HUANG X, et al. An iodide-chloride solid electrolyte compatible with lithium metal for all-solid-state lithium batteries[J]. ACS Applied Materials & Interfaces, 2025, 17(31): 44430-44439. DOI: 10.1021/acsami.5c07580. |
[30] | QIAN L, TU S B, WANG Y, et al. Near-saturated coordinated cations in oxyhalide superionic conductors boost high-rate all-solid-state batteries[J]. Journal of the American Chemical Society, 2025, 147(26): 23170-23179. DOI: 10.1021/jacs.5c07052. |
[31] | HUANG Y Y, YU Y R, WANG Z, et al. Rational design and realization of more sustainable spinel-like halides as fast ionic conductor for high-voltage all solid-state batteries[J].Chemical Engineering Journal, 2025, 518: 164755. DOI: 10.1016/j.cej. 2025.164755. |
[32] | DONG S W, SHI L F, ZHANG Y, et al. "Pseudo-charge-transfer complex" electrolyte enables 490 Wh/kg lithium metal battery operated from -40 to 80 ℃[J]. Angewandte Chemie International Edition, 2025, 64(31): e202506750. DOI: 10.1002/anie. 202506750. |
[33] | CHEN L K, GU T, MI J S, et al. Homogeneous polymer-ionic solvate electrolyte with weak dipole-dipole interaction enabling long cycling pouch lithium metal battery[J]. Nature Communications, 2025, 16: 3517. DOI: 10.1038/s41467-025-58689-3. |
[34] | QIN M S, MA F F, WU Q, et al. Bi-coordinating solvent in EC-free electrolyte to inhibit electrode crosstalk in high-voltage lithium-ion batteries[J]. eTransportation, 2025, 25: 100434. DOI: 10.1016/j.etran.2025.100434. |
[35] | LEOPOLD M, PFEIFFER F, MUSCHIOL E C, et al. Importance of fluorine in high voltage electrolytes for LNMO||SiGr cell chemistry[J]. Small, 2025, 2505254. DOI: 10.1002/smll. 202505254. |
[36] | WU X Y, SU C C, LI X L, et al. Molecular engineering of ethereal electrolyte for ultrastable Si-based high voltage full cells[J]. Journal of Materials Chemistry A, 2025, 13(27): 21929-21941. DOI: 10.1039/D5TA01872B. |
[37] | GU R, ZHANG D, XU S T, et al. Thermoresponsive ether-based electrolyte for wide temperature operating lithium metal batteries[J]. Nature Communications, 2025, 16: 5474. DOI: 10.1038/s41467-025-60524-8. |
[38] | DUAN S, ZHANG L F, ZHENG Y, et al. "Rigid exterior, soft interior" design enables high-voltage polyether electrolytes for quasi-solid-state batteries[J]. Angewandte Chemie International Edition, 2025, 64(32): e202502728. DOI: 10.1002/anie. 202502728. |
[39] | ZHAOC X, LI Z, CHEN B, et al. Self-adaptive electrolytes for fast-charging batteries[J]. Nature Energy, 2025, 10(7): 904-913. DOI: 10.1038/s41560-025-01801-0. |
[40] | LIUC K, YANG T, et al. High-voltage fluoride-free electrolytes for Ni-rich cathodes offering superior water resistance[J]. ACS Sustainable Chemistry & Engineering, 2025, 13(24): 8951-8958. DOI: 10.1021/acssuschemeng.5c00933. |
[41] | LIU J G,CAO J H, LI B H, et al. Ethyl 2-butene phosphite as a film-forming additive for high voltage lithium-ion batteries[J]. Journal of Power Sources, 2025, 629: 235966. DOI: 10.1016/j.jpowsour.2024.235966. |
[42] | XIE Z, XIA Z Y,CAI J, et al. Designing high-temperature stable electrolytes: Insights from the degradation mechanisms of boron-containing additives[J]. Journal of the American Chemical Society, 2025, 147(27): 23931-23945. DOI: 10.1021/jacs.5c06741. |
[43] | ZHANG W F, FENG X N, HUANG W S, et al. Thermal runaway inhibition of lithium-ion batteries employing thermal-driven phosphazene based electrolytes[J]. Advanced Functional Materials, 2025, 2508688. DOI: 10.1002/adfm. 202508688. |
[44] | ZHANG Y J, ZHANG Y M, WANG X Y, et al. Trace multifunctional additive enhancing 4.8 V ultra-high voltage performance of Ni-rich cathode and SiOx anode battery[J]. Advanced Energy Materials, 2025, 15(5): 2403751. DOI: 10.1002/aenm.202403751. |
[45] | ZHENG M T, LIU T F, WU J W, et al. Voltage-induced bromide redox enables capacity restoration of fast-charging batteries[J]. Advanced Materials, 2025, 37(7): 2414207. DOI: 10.1002/adma. 202414207. |
[46] | KO H Y, PARK J, LEE J Y, et al. Modification of cathode surface for sulfide electrolyte-based all-solid-state batteries using sulfurized LiNbO3 coating[J]. Batteries & Supercaps, 2025, 2500188. DOI: 10.1002/batt.202500188. |
[47] | LIU C, LI W J, DENG K Y, et al. A stable all-solid-state lithium metal battery achieved by optimizing the cathode-electrolyte interface through perovskite-coating-stabilized single crystal LiNi0.9Co0.05Mn0.05O2 cathode[J].Chemical Engineering Journal, 2025, 517: 164576. DOI: 10.1016/j.cej.2025.164576. |
[48] | YUAN L, PENG W J, ZHAN Z Y, et al. Enhancing ion transport at primary interparticle boundaries of polycrystalline lithium-rich oxide in all-solid-state batteries[J]. Angewandte Chemie International Edition, 2025, e202508605. DOI: 10.1002/anie. 202508605. |
[49] | CHEN H, LIU H W, LU YC, et al. Realizing practical use of LiNiO2 cathode in halide-based all-solid-state lithium metal batteries[J].Chemical Engineering Journal, 2025, 519: 165314. DOI: 10.1016/j.cej.2025.165314. |
[50] | LEE J, ZHOU S Y, FERRARI V C, et al. Halide segregation to boost all-solid-state lithium-chalcogen batteries[J]. Science, 2025, 388(6748): 724-729. DOI: 10.1126/science.adt1882. |
[51] | SU Y P, REN S Y, LIN Q Y, et al. In situ solid electrolyte ionic pathway formation in high sulfur loading cathodes for high-performance all-solid-state lithium-sulfur batteries[J]. Advanced Energy Materials, 2025, 15(22): 2500363. DOI: 10.1002/aenm. 202500363. |
[52] | YU Z, SINGH B, YU Y, et al. Suppressing argyrodite oxidation by tuning the host structure for high-areal-capacity all-solid-state lithium-sulfur batteries[J]. Nature Materials, 2025, 24(7): 1082-1090. DOI: 10.1038/s41563-025-02238-2. |
[53] | LI H,CUI L M, WU F L, et al. Kinetically-enhanced gradient modulator layer enables wide-temperature ultralong-life all-solid-state lithium-sulfur batteries[J]. Advanced Energy Materials, 2025, 2501259. DOI: 10.1002/aenm.202501259. |
[54] | LI Q, XIE C X, JIANG X, et al.Catalytic solder fuses solid-solid interfaces for all-solid-state lithium-sulfur batteries[J]. Advanced Materials, 2025, 2507308. DOI: 10.1002/adma. 202507308. |
[55] | ZHOU K, LU S J, et al. Tailored cathode composite microstructure enables long cycle life at low pressure for all-solid-state batteries[J]. ACS Energy Letters, 2025, 10(2): 966-974. DOI: 10.1021/acsenergylett.4c03256. |
[56] | LIN Y Y, LIU H Z, HU Y Q, et al. Sub-micrometer Li6PS5Cl regulated cathodic Li kinetics in sulfide based all-solid-state batteries[J]. Physical Chemistry Chemical Physics, 2025, 27(6): 3455-3462. DOI: 10.1039/D4CP03893B. |
[57] | BHADRA A, BRUNISHOLZ M, BONSU J O, et al.Carbon mediated in situ cathode interface stabilization for high rate and highly stable operation of all-solid-state lithium batteries[J]. Advanced Energy Materials, 2025, 15(14): 2403608. DOI: 10. 1002/aenm.202403608. |
[58] | CHENG Z, LIU H, ZHANG M H, et al. Realizing four-electron conversion chemistry for all-solid-state Li||I2 batteries at room temperature[J]. Nature Communications, 2025, 16: 1723. DOI: 10. 1038/s41467-025-56932-5. |
[59] | PANG T L, WU S F, WU H, et al. A high-performance garnet-based all-solid-state battery fabricated through room-temperature ultrasonic welding[J]. Advanced Science, 2025, e04388. DOI: 10. 1002/advs.202504388. |
[60] | LIU J T, MEI X, WANG J, et al. Dynamically stable and intimately bonded Li/garnet interface for high-areal-capacity solid-state lithium-metal batteries[J]. Advanced Functional Materials, 2025, e12943. DOI: 10.1002/adfm.202512943. |
[61] | CHENG Z, ZHAO W X, WANG Q D, et al. Beneficial redox activity of halide solid electrolytes empowering high-performance anodes in all-solid-state batteries[J]. Nature Materials, 2025: 1-10. DOI: 10.1038/s41563-025-02296-6. |
[62] | SUN Y L, WU Y H, YAN Y W, et al.Creep localization empowering high-capacity alloy anodes for durable all-solid-state lithium batteries[J]. Advanced Materials, 2025, 2510128. DOI: 10. 1002/adma.202510128. |
[63] | KANG J, KIM J, KIM R, et al. Mechanistic insight into calendar aging of anode-less all-solid-state batteries[J]. Energy Storage Materials, 2025, 76: 104164. DOI: 10.1016/j.ensm.2025.104164. |
[64] | KIM C, LI Y S, JANG I, et al. Pushing the limits: Maximizing energy density in silicon sulfide solid-state batteries[J]. Advanced Materials, 2025, 37(27): 2502300. DOI: 10.1002/adma. 202502300. |
[65] | OH J, et al. Solvent-binder engineering for a practically viable solution process for fabricating sulfide-based all-solid-state batteries[J]. ACS Energy Letters, 2025, 10(6): 2831-2838. DOI: 10.1021/acsenergylett.5c00762. |
[66] | HU Z T, GAO P Y, JU S L, et al. Dynamic volume compensation realizing Ah-level all-solid-state silicon-sulfur batteries[J]. Nature Communications, 2025, 16: 3979. DOI: 10.1038/s41467-025-59224-0. |
[67] | SU Y, DENG Y X, LUO Y, et al. Ultra-thin lithium-phosphorus-sulfur (LPS) interfacial electrolyte layer for all-solid-state lithium metal battery with high-rate and high-areal-capacity performance[J]. Advanced Functional Materials, 2025, e09820. DOI: 10.1002/adfm.202509820. |
[68] | WU Y, ZHANG W J, RUI X Y, et al. Thermal runaway mechanism of composite cathodes for all-solid-state batteries[J]. Advanced Energy Materials, 2025, 15(23): 2405183. DOI: 10.1002/aenm. 202405183. |
[69] | LIU Y T, AN Y, FANG C, et al. Surface-localized phase mediation accelerates quasi-solid-state reaction kinetics in sulfur batteries[J]. Nature Chemistry, 2025, 17(4): 614-623. DOI: 10.1038/s41557-025-01735-w. |
[70] | KANG J, EOM H, JANG S, et al. Bollard-anchored binder system for high-loading cathodes fabricated via dry electrode process for Li-ion batteries[J]. Advanced Materials, 2025, 37(12): 2416872. DOI: 10.1002/adma.202416872. |
[71] | LIU H X, WANG S Q, KONG W H, et al.Constructing ionic transport network via supramolecular composite binder in cathode for all-solid-state lithium batteries[J]. Angewandte Chemie International Edition, 2025, 64(28): e202507579. DOI: 10.1002/anie.202507579. |
[72] | LI Z W, LIN F, ZHANG X D, et al. Stress-relieving protective elastomeric interphase for stable Ni-rich cathodes[J]. Advanced Functional Materials, 2025, 35(6): 2415035. DOI: 10.1002/adfm. 202415035. |
[73] | KLOKER G, ANJASS M, BRAUCHLE F, et al. Investigation of expansion and potential of Si-dominant anodes with binder modification in full cells[J]. Journal of Power Sources, 2025, 652: 237620. DOI: 10.1016/j.jpowsour.2025.237620. |
[74] | HAN X B, MAO S Y, WANG Y, et al. Manipulation of lithium dendrites based on electric field relaxation enabling safe and long-life lithium-ion batteries[J]. Nature Communications, 2025, 16: 3699. DOI: 10.1038/s41467-025-58818-y. |
[75] | WEN Z, LIU Y W, LI K W, et al. Boosting the Li-O2 pouch cell beyond 860 Wh/kg1 with an O2-enriched localized high-concentration electrolyte[J]. National Science Review, 2025, 12(7): nwaf059. DOI: 10.1093/nsr/nwaf059. |
[76] | LI Z Y, WANG F, GAO Y, et al. Probing the effect of electrode thermodynamics on reaction heterogeneity in thick battery electrodes[J]. Advanced Materials, 2025, 37(33): 2502299. DOI: 10.1002/adma.202502299. |
[77] | JEONG H, et al.Curvature-dependent electrochemo-mechanics of silicon during electrochemical cycling[J]. ACS Energy Letters, 2025, 10(7): 3388-3394. DOI: 10.1021/acsenergylett.5c01043. |
[78] | CAI J Y, ZHOU X W, LI L X, et al. Kinetically dormant Ni-rich layered cathode during high-voltage operation[J]. Advanced Materials, 2025, 37(14): 2419253. DOI: 10.1002/adma. 202419253. |
[79] | MCNULTY RC, JONES K D, DENISON B M G, et al. Singlet oxygen is not the source of ethylene carbonate degradation in nickel-rich Li-ion cells[J]. Energy & Environmental Science, 2025, 18(15): 7603-7609. DOI: 10.1039/D5EE00956A. |
[80] | KAELI E, JIANG Z L, YANG X M, et al. Decoupling first-cycle capacity loss mechanisms in sulfide solid-state batteries[J]. Energy & Environmental Science, 2025, 18(3): 1452-1463. DOI: 10.1039/D4EE04908J. |
[81] | PARANAMANA N C, WERBROUCK A, DATTA A K, et al. Understanding cathode-electrolyte interphase formation in solid state Li-ion batteries via 4D-STEM[J]. Advanced Energy Materials, 2025, 15(11): 2403904. DOI: 10.1002/aenm. 202403904. |
[82] | LI M H, YANG X M, WEI X B, et al. Cathode-electrolyte interphase of Ni-rich layered oxides: Evolving structure and implication on stability[J]. Nano Letters, 2025, 25(7): 2769-2776. DOI: 10.1021/acs.nanolett.4c05838. |
[83] | PARK S H, UNIVERSITY P, NAIK K G, et al.Chemo-mechanical behavior and stability of high-loading cathodes in solid-state batteries[J]. ACS Nano, 2025, 19(24): 22262-22269. DOI: 10. 1021/acsnano.5c04431. |
[84] | JUNG S J, LEE C, et al. Lithiation diagnostics by measuring electrochemodynamics in solid-state batteries[J]. ACS Energy Letters, 2025, 10(7): 3112-3121. DOI: 10.1021/acsenergylett.5c01570. |
[85] | HAO S, DAEMI S R, HEENAN T M M, et al. Fast degradation of solid electrolyte in initial cycling processes, tracked in 3D by synchrotron X-ray computed tomography[J]. ACS Nano, 2025, 19(22): 20516-20525. DOI: 10.1021/acsnano.4c17739. |
[86] | ZHANG S N, MUELLER L F, MACRAY L, et al. Revealing local diffusion dynamics in hybrid solid electrolytes[J]. ACS Energy Letters, 2025, 10(4): 1762-1771. DOI: 10.1021/acsenergylett.5c00214. |
[87] | KO S, OTSUKA H, KIMURA S, et al. Rapid safety screening realized by accelerating rate calorimetry with lab-scale small batteries[J]. Nature Energy, 2025, 10(6): 707-714. DOI: 10.1038/s41560-025-01751-7. |
[88] | LIN Z J, YAO Q S, YANG S J, et al. Highly safe all-solid-state lithium metal battery enabled by interface thermal runaway regulation between lithium metal and solid-state electrolyte[J]. Advanced Functional Materials, 2025, 35(29): 2424110. DOI: 10.1002/adfm.202424110. |
[89] | LI K, HUANG J D, QU X Y, et al. Void evolution at the Li/LLZO interface: Stack pressure and operating temperature-driven creep effect[J]. ACS Applied Materials & Interfaces, 2025, 17(2): 3146-3162. DOI: 10.1021/acsami.4c13564. |
[90] | WANG Y, SHI J S, GAO H W, et al. Study of void evolution in lithium solid-state batteries: Integrating high-throughput phase-field modeling, experimental validation, and machine learning[J]. Advanced Energy Materials, 2025, 2501616. DOI: 10.1002/aenm. 202501616. |
[91] | LIU J T, ZHANG Q F, FENG Y G, et al. Optimization of interfacial contacts in all-solid-state lithium-metal batteries under pressure and temperature modulation and its effect on cycling performance[J]. Journal of Power Sources, 2025, 646: 237268. DOI: 10.1016/j.jpowsour.2025.237268. |
[92] | ZHANG B W, YUAN B T, YAN X, et al. Atomic mechanism of lithium dendrite penetration in solid electrolytes[J]. Nature Communications, 2025, 16: 1906. DOI: 10.1038/s41467-025-57259-x. |
[93] | YOU Y W, ZHANG D X, WU Z F, et al. Grain boundary amorphization as a strategy to mitigate lithium dendrite growth in solid-state batteries[J]. Nature Communications, 2025, 16: 4630. DOI: 10.1038/s41467-025-59895-9. |
[94] | SADOWSKI M, ALBE K. Grain boundary transport in the argyrodite-type Li6PS5Br solid electrolyte: Influence of misorientation and anion disorder on Li ion mobility[J]. Advanced Materials Interfaces, 2024, 11(33): 2400423. DOI: 10.1002/admi. 202400423. |
[95] | BANERJEE S, TKATCHENKO A. Non-local interactions determine local structure and lithium diffusion in solid electrolytes[J]. Nature Communications, 2025, 16: 1672. DOI: 10.1038/s41467-025-56662-8. |
[96] | LEE K, YANAGI K, ARASHI T, et al. 3D simulation of all-solid-state batteries with real electrode structures derived from X-ray computed tomography[J]. Journal of Power Sources, 2025, 654: 237821. DOI: 10.1016/j.jpowsour.2025.237821. |
[97] | BEHARA S S, VAN DER VEN A. The crucial role of vacancy concentration in enabling superatomic diffusion in lithium intermetallics[J]. ACS Energy Letters, 2025, 10(4): 1772-1778. DOI: 10.1021/acsenergylett.5c00266. |
[98] | YANG Y, YAO N, GAO YC, et al. Data-knowledge-dual-driven electrolyte design for fast-charging lithium ion batteries[J]. Angew andte Chemie International Edition, 2025, 64(24): e202505212. DOI: 10.1002/anie.202505212. |
[99] | YARI S,CONDE REIS A, PANG Q Q, et al. Performance benchmarking and analysis of lithium-sulfur batteries for next-generation cell design[J]. Nature Communications, 2025, 16: 5473. DOI: 10.1038/s41467-025-60528-4. |
[100] | BUGRYNIEC P J, KHANNA S, WOOTTON M, et al. Assessment of the risks posed by thermal runaway within marine Li-ion battery energy storage systems—Considering past incidents, current guidelines and future mitigation measures[J]. Journal of Energy Storage, 2025, 128: 117070. DOI: 10.1016/j.est.2025.117070. |
[1] | Lining PAN, Haibin WANG, Xiang FANG, Pinghao SHI, Fei TAN, Junhua ZHAO. The effect of bifunctional electrolyte additive (cyanomethyl p-toluenesulfonate) on the performance of lithium cobalt oxide high-voltage lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(9): 3279-3289. |
[2] | Yan ZHAO, Hao LIU, Zonglin YI, Li LI, Lijing XIE, Fangyuan SU. Interfacial behavior of FEC and VC at graphite anode of lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(9): 3249-3258. |
[3] | Yihua QIAN, Yaohong ZHAO, Qing WANG, Peng GUO, Dating PEI, Yirou ZENG. Research progress and prospect of sodium halide solid-state electrolytes [J]. Energy Storage Science and Technology, 2025, 14(9): 3389-3401. |
[4] | Chao PANG, Shuang DING, Xiaokun ZHANG, Yong XIANG. Simulation study of the solvation structure and ion migration behavior in localized high-concentration electrolytes [J]. Energy Storage Science and Technology, 2025, 14(8): 3207-3215. |
[5] | Junfeng HAO, Jing ZHU, Guanjun CEN, Ronghan QIAO, Xinxin ZHANG, Qiangfu SUN, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Hong ZHOU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2025 to May 31 2025) [J]. Energy Storage Science and Technology, 2025, 14(7): 2884-2902. |
[6] | Jingfei CHENG. Internal fault analysis strategy of lithium battery based on isolation forest algorithm [J]. Energy Storage Science and Technology, 2025, 14(7): 2878-2880. |
[7] | Wenjie ZHANG, Dongsheng REN, Yu WU, Xinyu RUI, Xiang LIU, Xuning FENG, Languang LU. Thermal stability of key materials in Li10GeP12S2-based all-solid-state batteries [J]. Energy Storage Science and Technology, 2025, 14(6): 2193-2199. |
[8] | Zhangjie XU, Zhengyue SUN, Xinyan ZHANG, Jiliang ZHANG, Yingchao YU, Chuang DONG. FeOOH coating on FeS as high-performance anode materials for Li-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(6): 2232-2239. |
[9] | Dandan HAN, Wuwei ZHANG, Liang ZHANG, Zongjiang WANG. Design and electrochemical performance of LiMn1-y Fe y PO4/C cathode materials with a core-shell structure [J]. Energy Storage Science and Technology, 2025, 14(6): 2215-2222. |
[10] | Deshuai LIU, Huiqin ZHU, Ruihao SUN, Meng LI, Wenhao GONG, Xiaohui LI, Weiwei QIAN. Synergistic dual-additive boost cyclability of sodium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(5): 1858-1865. |
[11] | Yingjian CHEN, Shang WU, Yuancheng CAO, Baoshuai DU, Zhenxing WANG, Zhongwen OUYANG, Shun TANG. Application of magnetic separation in the recycling of cathode and anode materials from spent lithium batteries [J]. Energy Storage Science and Technology, 2025, 14(5): 1918-1927. |
[12] | Xiaoru XU, Jianzhen OU, Jiawei LIU, Zhicong CHEN, Hao YE, Yinglong LIU, Yingli LIU, Zeyu LIN, Jingjing LIU, Junhui JIAN, Xu LUO, Jingmin FAN, Chao WANG, Libin LEI, Bo LIANG. Direct ammonia tubular fuel cell with an embedded microchannel ceramic cracking reactor [J]. Energy Storage Science and Technology, 2025, 14(5): 1818-1828. |
[13] | Ruilin HE, Tong ZHANG, Jiachun WU, Chaoyang WANG, Yonghong DENG, Guangzhao ZHANG, Xiaoxiong XU. Design of scaffold materials and their application in lithium batteries [J]. Energy Storage Science and Technology, 2025, 14(5): 1758-1775. |
[14] | Qiangfu SUN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Junfeng HAO, Xinxin ZHANG, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Hong ZHOU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Feb. 1, 2025 to March 31, 2025) [J]. Energy Storage Science and Technology, 2025, 14(5): 1727-1747. |
[15] | Chenglong JIN, Mengting SUN, Qingfei MENG, Shuwei ZHANG, Zhou ZHOU, Yuyang QI. Design and application of wide-temperature electrolytes for Li/Cr8O21 batteries [J]. Energy Storage Science and Technology, 2025, 14(4): 1369-1376. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||