Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (9): 3279-3289.doi: 10.19799/j.cnki.2095-4239.2025.0119
• Energy Storage Materials and Devices • Previous Articles Next Articles
Lining PAN1(), Haibin WANG1, Xiang FANG1, Pinghao SHI1, Fei TAN1, Junhua ZHAO2(
)
Received:
2025-02-08
Revised:
2025-03-06
Online:
2025-09-28
Published:
2025-09-05
Contact:
Junhua ZHAO
E-mail:pan.lining@sunyes.cn;qzzjh@qzc.edu.cn
CLC Number:
Lining PAN, Haibin WANG, Xiang FANG, Pinghao SHI, Fei TAN, Junhua ZHAO. The effect of bifunctional electrolyte additive (cyanomethyl p-toluenesulfonate) on the performance of lithium cobalt oxide high-voltage lithium-ion batteries[J]. Energy Storage Science and Technology, 2025, 14(9): 3279-3289.
[1] | XU K. Electrolytes and interphases in Li-ion batteries and beyond[J]. Chemical Reviews, 2014, 114(23): 11503-11618. DOI: 10.1021/cr500003w. |
[2] | KIM T, SONG W T, SON D Y, et al. Lithium-ion batteries: Outlook on present, future, and hybridized technologies[J]. Journal of Materials Chemistry A, 2019, 7(7): 2942-2964. DOI: 10.1039/C8TA10513H. |
[3] | CHEN S, HUANG L L, WEN X Y, et al. Formation mechanism and regulation of LiF in a solid electrolyte interphase on graphite anodes in carbonate electrolytes[J]. The Journal of Physical Chemistry C, 2023, 127(24): 11462-11471. DOI: 10.1021/acs.jpcc.3c02731. |
[4] | SUN Z Y, ZHOU H B, LUO X H, et al. Design of a novel electrolyte additive for high voltage LiCoO2 cathode lithium-ion batteries: Lithium 4-benzonitrile trimethyl borate[J]. Journal of Power Sources, 2021, 503: 230033. DOI: 10.1016/j.jpowsour. 2021.230033. |
[5] | WANG K, WAN J J, XIANG Y X, et al. Recent advances and historical developments of high voltage lithium cobalt oxide materials for rechargeable Li-ion batteries[J]. Journal of Power Sources, 2020, 460: 228062. DOI: 10.1016/j.jpowsour.2020. 228062. |
[6] | WANG L L, CHEN B B, MA J, et al. Reviving lithium cobalt oxide-based lithium secondary batteries-toward a higher energy density[J]. Chemical Society Reviews, 2018, 47(17): 6505-6602. DOI: 10.1039/C8CS00322J. |
[7] | HU Z M, WANG K, CHE Y X, et al. A novel electrolyte additive enables high-voltage operation of nickel-rich oxide/graphite cells[J]. The Journal of Physical Chemistry Letters, 2021, 12(18): 4327-4338. DOI: 10.1021/acs.jpclett.1c00803. |
[8] | TANG C, CHEN Y W, ZHANG Z F, et al. Stable cycling of practical high-voltage LiCoO2 pouch cell via electrolyte modification[J]. Nano Research, 2023, 16(3): 3864-3871. DOI: 10.1007/s12274-022-4955-5. |
[9] | SHAO L, ZHOU L, YANG L S, et al. Enhanced 4.5 V/55 ℃ cycling performance of LiCoO2 cathode via LiAlO2 LiCo1- xAlxO2 double-layer coatings[J]. Electrochimica Acta, 2019, 297: 742-748. DOI: 10.1016/j.electacta.2018.12.044. |
[10] | KONG W J, ZHANG J C, WONG D, et al. Tailoring Co3d and O2p band centers to inhibit oxygen escape for stable 4.6 V LiCoO2 cathodes[J]. Angewandte Chemie International Edition, 2021, 60(52): 27102-27112. DOI: 10.1002/anie.202112508. |
[11] | SUN L W, ZHANG Z S, HU X F, et al. Realization of Ti doping by electrostatic assembly to improve the stability of LiCoO2 cycled to 4.5 V[J]. Journal of the Electrochemical Society, 2019, 166(10): A1793-A1798. DOI: 10.1149/2.0421910jes. |
[12] | LI G J, LIAO Y H, LI Z F, et al. Constructing a low-impedance interface on a high-voltage LiNi0.8Co0.1Mn0.1O2 cathode with 2, 4, 6-triphenyl boroxine as a film-forming electrolyte additive for Li-ion batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(33): 37013-37026. DOI: 10.1021/acsami.0c05623. |
[13] | LI G J, FENG Y, ZHU J Y, et al. Achieving a highly stable electrode/electrolyte interface for a nickel-rich cathode via an additive-containing gel polymer electrolyte[J]. ACS Applied Materials & Interfaces, 2022, 14(32): 36656-36667. DOI: 10.1021/acsami.2c09103. |
[14] | LI T T, LIN J L, XING L D, et al. Insight into the contribution of nitriles as electrolyte additives to the improved performances of the LiCoO2 cathode[J]. The Journal of Physical Chemistry Letters, 2022, 13(37): 8801-8807. DOI: 10.1021/acs.jpclett.2c02032. |
[15] | LI C L, ZONG F F, HUANG J, et al. Inhibition of silicon-based anode interfacial volume expansion behavior by 1, 3, 6-hexane trinitrile additive via induced interfacial solvation effect[J]. Journal of Power Sources, 2024, 613: 234922. DOI: 10.1016/j.jpowsour. 2024.234922. |
[16] | LIU W, SHI Y L, ZHUANG Q C, et al. Ethylene glycol bis(propionitrile) ether as an additive for SEI film formation in lithium-ion batteries[J]. International Journal of Electrochemical Science, 2020, 15(5): 4722-4738. DOI: 10.20964/2020.05.13. |
[17] | XIA J, SINHA N N, CHEN L P, et al. Study of methylene methanedisulfonate as an additive for Li-ion cells[J]. Journal of the Electrochemical Society, 2014, 161(1): A84-A88. DOI: 10. 1149/2.034401jes. |
[18] | ZHANG Z, LIU F Y, HUANG Z Y, et al. Enhancing the electrochemical performance of a high-voltage LiCoO2 cathode with a bifunctional electrolyte additive[J]. ACS Applied Energy Materials, 2021, 4(11): 12954-12964. DOI: 10.1021/acsaem.1c02593. |
[19] | ZUO X X, DENG X, MA X D, et al. 3-(Phenylsulfonyl)propionitrile as a higher voltage bifunctional electrolyte additive to improve the performance of lithium-ion batteries[J]. Journal of Materials Chemistry A, 2018, 6(30): 14725-14733. DOI: 10.1039/C8TA04558E. |
[20] | ZOU Y, CHENG Y, LIN J D, et al. Boosting high voltage cycling of LiCoO2 cathode via triisopropanolamine cyclic borate electrolyte additive[J]. Journal of Power Sources, 2022, 532: 231372. DOI: 10.1016/j.jpowsour.2022.231372. |
[21] | CHEN S, WEN X Y, CHEN Y L, et al. Distinctive interphasial properties and high structural reversibility endowed by B-/ CN–electrolyte additive and its superior electrochemical performance for graphite/LiCoO2 pouch cells[J]. Chemical Engineering Journal, 2024, 479: 147813. DOI: 10.1016/j.cej.2023.147813. |
[22] | XU K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries[J]. Chemical Reviews, 2004, 104(10): 4303-4418. DOI: 10.1021/cr030203g. |
[23] | ZHAO W M, ZHENG B Z, LIU H D, et al. Toward a durable solid electrolyte film on the electrodes for Li-ion batteries with high performance[J]. Nano Energy, 2019, 63: 103815. DOI: 10.1016/j.nanoen.2019.06.011. |
[1] | Gongrui WANG, Anping ZHANG, Xuanxuan REN, Mingzhe YANG, Yuning HAN, Zhongshuai WU. High-voltage lithium cobalt oxide cathode: Key challenges, modification strategies and future prospectives [J]. Energy Storage Science and Technology, 2025, 14(6): 2278-2319. |
[2] | Deshuai LIU, Huiqin ZHU, Ruihao SUN, Meng LI, Wenhao GONG, Xiaohui LI, Weiwei QIAN. Synergistic dual-additive boost cyclability of sodium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(5): 1858-1865. |
[3] | Xingqun LIAO, Rui YANG, Lijuan YU, Dalin HU, Feng XIAO, Jing HU, Zhouguang LU. 2,6-pyridine dimethyl acetonitrile: A multifunctional electrolyte additive for stabilizing high-voltage LiCoO2 [J]. Energy Storage Science and Technology, 2025, 14(4): 1331-1339. |
[4] | Dalin HU, Panli REN, Changming ZHANG, Mingyang YANG, Zhouguang LU. Improving the cycling performance of LiCoO2 at 4.53 V via in situ co-doping of Al-Y-Zr [J]. Energy Storage Science and Technology, 2024, 13(3): 742-748. |
[5] | Mingxun JIA, Tong WU, Daotong YANG, Xiaoxi QIN, Jinghai LIU, Limei DUAN. Electrolyte multifunctional additives of lithium-sulfur battery: Mechanism of action and advanced characterization [J]. Energy Storage Science and Technology, 2024, 13(1): 36-47. |
[6] | Shanshan CHEN, Xiang ZHENG, Ruo WANG, Mingman YUAN, Wei PENG, Boming LU, Guangzhao ZHANG, Chaoyang WANG, Jun WANG, Yonghong DENG. Research progress in the electrolyte additives in silicon-based anode for lithium-ion batteries: Challenges and prospects [J]. Energy Storage Science and Technology, 2024, 13(1): 279-292. |
[7] | Zhihao LIU, Tong DU, Ruirui LI, Tao DENG. Developments of wide temperature range, high voltage and safe EC-free electrolytes [J]. Energy Storage Science and Technology, 2023, 12(8): 2504-2525. |
[8] | Lingfeng HUANG, Dongmei HAN, Sheng HUANG, Shuanjin WANG, Min XIAO, Yuezhong MENG. Research progress of polymer electrolytes containing organoboron for lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(6): 1815-1830. |
[9] | Wenchao SHI, Yu LIU, Bomian ZHANG, Qi LI, Chunhua HAN, Liqiang MAI. Research progress and prospect on electrolyte additives for stabilizing the zinc anode interface in aqueous batteries [J]. Energy Storage Science and Technology, 2023, 12(5): 1589-1603. |
[10] | Chuan HU, Zhiwei HU, Zhendong LI, Shuai LI, Hao WANG, Liping WANG. Tailoring LiPF6-base electrolyte solvation structure toward a stable Lithium-rich manganese-based cathode interface [J]. Energy Storage Science and Technology, 2023, 12(5): 1604-1615. |
[11] | Yansen ZHENG, Yongyin WANG, Jiuqing GUI, Zhuohao XIE, Yue XU, Qiaoying CAO, Yuehua XU, Yingliang LIU, Yeru LIANG. Preparation and performances of gelatin/polyethylene oxide composite electrolyte for high-voltage solid-state lithium batteries [J]. Energy Storage Science and Technology, 2023, 12(10): 3064-3074. |
[12] | Ziwei YUAN, Chuyuan LIN, Ziyan YUAN, Xiaoli SUN, Qingrong QIAN, Qinghua CHEN, Lingxing ZENG. The research process on low temperature performance of zinc ion batteries [J]. Energy Storage Science and Technology, 2023, 12(1): 278-298. |
[13] | Tao YIN, Longzhou JIA, Xiuliang CHANG, Zuoqiang DAI, Lili ZHENG. Research on thermal safety of soft-pack LiFePO4 battery after high-voltage float charge [J]. Energy Storage Science and Technology, 2022, 11(8): 2546-2555. |
[14] | WU Yida, ZHANG Yi, ZHAN Yuanjie, GUO Yaqi, ZHANG liao, LIU Xingjiang, YU Hailong, ZHAO Wenwu, HUANG Xuejie. The effect of B2O3 modification on the electrochemical properties of LiCoO2 cathode [J]. Energy Storage Science and Technology, 2022, 11(6): 1687-1692. |
[15] | Haiyan HU, Shulei CHOU, Yao XIAO. Layered oxide cathode materials based on molecular orbital hybridization for high voltage sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1093-1102. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||